Natural Questions: A Benchmark for Question Answering Research

We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotate...

Full description

Bibliographic Details
Main Authors: Kwiatkowski, Tom, Palomaki, Jennimaria, Redfield, Olivia, Collins, Michael, Parikh, Ankur, Alberti, Chris, Epstein, Danielle, Polosukhin, Illia, Devlin, Jacob, Lee, Kenton, Toutanova, Kristina, Jones, Llion, Kelcey, Matthew, Chang, Ming-Wei, Dai, Andrew M., Uszkoreit, Jakob, Le, Quoc, Petrov, Slav
Format: Article
Language:English
Published: The MIT Press 2019-11-01
Series:Transactions of the Association for Computational Linguistics
Online Access:https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00276
Description
Summary:We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.
ISSN:2307-387X