Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model
Abstract Background Cesarean scar defect (CSD) is characterized by the presence of fibrotic tissue and decreased muscular density which is induced by cesarean section. Serious CSD may eventually result in infertility or obstetrical complications. Human amniotic epithelial cells (hAECs) have shown gr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-03-01
|
Series: | Stem Cell Research & Therapy |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13287-021-02260-6 |
id |
doaj-86443e04e4e64b6396efce77a96981e6 |
---|---|
record_format |
Article |
spelling |
doaj-86443e04e4e64b6396efce77a96981e62021-03-28T11:09:32ZengBMCStem Cell Research & Therapy1757-65122021-03-0112111410.1186/s13287-021-02260-6Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar modelYihui Fan0Junyan Sun1Qiuwan Zhang2Dongmei Lai3International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityInternational Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityInternational Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityInternational Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityAbstract Background Cesarean scar defect (CSD) is characterized by the presence of fibrotic tissue and decreased muscular density which is induced by cesarean section. Serious CSD may eventually result in infertility or obstetrical complications. Human amniotic epithelial cells (hAECs) have shown great promise in tissue regeneration. This study aims to investigate whether hAEC transplantation has the therapeutic effects on the rat uterine scar following full-thickness injury. Methods A rat uterine scar model was established by excising the full-thickness uterine wall of about 1.0 cm in length and 1/2–2/3 of the total circumference in width. At day 30 post-surgery, hAECs were transplanted into the uterine scar. At day 30 and 60 post-transplantation, hematoxylin and eosin (H&E) staining, Masson staining, and IHC staining for vWF, VEGFA, α-SMA, and MMP-8 were performed to evaluate the regeneration of the scarred uterus and the underlying mechanism. Pregnancy outcomes were assessed at day 60 after hAEC transplantation. Finally, hAECs were incubated with hydrogen peroxide to verify the paracrine effect of hAECs. Results Collagen deposition, thin myometrium, and injured endometrium were observed in the rat uterine scar model. After hAEC transplantation, collagen deposition in the uterine scar decreased, and myometrial and endometrial recovery was facilitated. hAEC transplantation also increased the fetus number implanted within the scarred area. Moreover, we found hAECs promoted angiogenesis via upregulation of VEGFA and decreased collagen deposition by upregulating MMP-8 in the uterine scar. The in vitro studies further demonstrated an increase in the expression level of MMP-8 in hAECs cultured with hydrogen peroxide. Conclusions These results suggested that hAEC transplantation may be efficacious in the functional repair and collagen degradation of uterine scars, which provides a new therapeutic strategy to CSD.https://doi.org/10.1186/s13287-021-02260-6Human amniotic epithelial cellsCesarean scar defectUterine scarMatrix metalloproteinase-8FertilityWound healing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yihui Fan Junyan Sun Qiuwan Zhang Dongmei Lai |
spellingShingle |
Yihui Fan Junyan Sun Qiuwan Zhang Dongmei Lai Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model Stem Cell Research & Therapy Human amniotic epithelial cells Cesarean scar defect Uterine scar Matrix metalloproteinase-8 Fertility Wound healing |
author_facet |
Yihui Fan Junyan Sun Qiuwan Zhang Dongmei Lai |
author_sort |
Yihui Fan |
title |
Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
title_short |
Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
title_full |
Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
title_fullStr |
Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
title_full_unstemmed |
Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
title_sort |
transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model |
publisher |
BMC |
series |
Stem Cell Research & Therapy |
issn |
1757-6512 |
publishDate |
2021-03-01 |
description |
Abstract Background Cesarean scar defect (CSD) is characterized by the presence of fibrotic tissue and decreased muscular density which is induced by cesarean section. Serious CSD may eventually result in infertility or obstetrical complications. Human amniotic epithelial cells (hAECs) have shown great promise in tissue regeneration. This study aims to investigate whether hAEC transplantation has the therapeutic effects on the rat uterine scar following full-thickness injury. Methods A rat uterine scar model was established by excising the full-thickness uterine wall of about 1.0 cm in length and 1/2–2/3 of the total circumference in width. At day 30 post-surgery, hAECs were transplanted into the uterine scar. At day 30 and 60 post-transplantation, hematoxylin and eosin (H&E) staining, Masson staining, and IHC staining for vWF, VEGFA, α-SMA, and MMP-8 were performed to evaluate the regeneration of the scarred uterus and the underlying mechanism. Pregnancy outcomes were assessed at day 60 after hAEC transplantation. Finally, hAECs were incubated with hydrogen peroxide to verify the paracrine effect of hAECs. Results Collagen deposition, thin myometrium, and injured endometrium were observed in the rat uterine scar model. After hAEC transplantation, collagen deposition in the uterine scar decreased, and myometrial and endometrial recovery was facilitated. hAEC transplantation also increased the fetus number implanted within the scarred area. Moreover, we found hAECs promoted angiogenesis via upregulation of VEGFA and decreased collagen deposition by upregulating MMP-8 in the uterine scar. The in vitro studies further demonstrated an increase in the expression level of MMP-8 in hAECs cultured with hydrogen peroxide. Conclusions These results suggested that hAEC transplantation may be efficacious in the functional repair and collagen degradation of uterine scars, which provides a new therapeutic strategy to CSD. |
topic |
Human amniotic epithelial cells Cesarean scar defect Uterine scar Matrix metalloproteinase-8 Fertility Wound healing |
url |
https://doi.org/10.1186/s13287-021-02260-6 |
work_keys_str_mv |
AT yihuifan transplantationofhumanamnioticepithelialcellspromotesmorphologicalandfunctionalregenerationinaratuterinescarmodel AT junyansun transplantationofhumanamnioticepithelialcellspromotesmorphologicalandfunctionalregenerationinaratuterinescarmodel AT qiuwanzhang transplantationofhumanamnioticepithelialcellspromotesmorphologicalandfunctionalregenerationinaratuterinescarmodel AT dongmeilai transplantationofhumanamnioticepithelialcellspromotesmorphologicalandfunctionalregenerationinaratuterinescarmodel |
_version_ |
1724200389758156800 |