Action-based Modeling of Complex Networks

Abstract Complex networks can model a wide range of complex systems in nature and society, and many algorithms (network generators) capable of synthesizing networks with few and very specific structural characteristics (degree distribution, average path length, etc.) have been developed. However, th...

Full description

Bibliographic Details
Main Authors: Viplove Arora, Mario Ventresca
Format: Article
Language:English
Published: Nature Publishing Group 2017-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-05444-4
Description
Summary:Abstract Complex networks can model a wide range of complex systems in nature and society, and many algorithms (network generators) capable of synthesizing networks with few and very specific structural characteristics (degree distribution, average path length, etc.) have been developed. However, there remains a significant lack of generators capable of synthesizing networks with strong resemblance to those observed in the real-world, which can subsequently be used as a null model, or to perform tasks such as extrapolation, compression and control. In this paper, a robust new approach we term Action-based Modeling is presented that creates a compact probabilistic model of a given target network, which can then be used to synthesize networks of arbitrary size. Statistical comparison to existing network generators is performed and results show that the performance of our approach is comparable to the current state-of-the-art methods on a variety of network measures, while also yielding easily interpretable generators. Additionally, the action-based approach described herein allows the user to consider an arbitrarily large set of structural characteristics during the generator design process.
ISSN:2045-2322