Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models

Solar power’s variability makes managing power system planning and operation difficult. Facilitating a high level of integration of solar power resources into a grid requires maintaining the fundamental power system so that it is stable when interconnected. Accurate and reliable forecastin...

Full description

Bibliographic Details
Main Authors: Seungbeom Nam, Jin Hur
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/11/11/2982
Description
Summary:Solar power’s variability makes managing power system planning and operation difficult. Facilitating a high level of integration of solar power resources into a grid requires maintaining the fundamental power system so that it is stable when interconnected. Accurate and reliable forecasting helps to maintain the system safely given large-scale solar power resources; this paper therefore proposes a probabilistic forecasting approach to solar resources using the R statistics program, applying a hybrid model that considers spatio-temporal peculiarities. Information on how the weather varies at sites of interest is often unavailable, so we use a spatial modeling procedure called kriging to estimate precise data at the solar power plants. The kriging method implements interpolation with geographical property data. In this paper, we perform day-ahead forecasts of solar power based on the probability in one-hour intervals by using a Naïve Bayes Classifier model, which is a classification algorithm. We augment forecasting by taking into account the overall data distribution and applying the Gaussian probability distribution. To validate the proposed hybrid forecasting model, we perform a comparison of the proposed model with a persistence model using the normalized mean absolute error (NMAE). Furthermore, we use empirical data from South Korea’s meteorological towers (MET) to interpolate weather variables at points of interest.
ISSN:1996-1073