TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells.
We have established an in vitro HSV-2 acute infection model with Human cervical epithelial (HCE cells, the primary target and natural host cells for HSV-2) to investigate the role of TLRs-mediated innate immune response to HSV-2. In current study, we found that HSV-2 infection induced activity of NF...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3835891?pdf=render |
Summary: | We have established an in vitro HSV-2 acute infection model with Human cervical epithelial (HCE cells, the primary target and natural host cells for HSV-2) to investigate the role of TLRs-mediated innate immune response to HSV-2. In current study, we found that HSV-2 infection induced activity of NF-kB reporter and expression of cytokines are TLR4-dependent using approaches with shRNA and TLR4 antagonist. Knockdown experiments demonstrated that the adaptor molecules MyD88 and Mal of the TLRs signaling pathway are required in the HSV-2 induced TLR4-dependent NF-kB activation in HCE cells. Western blot assay suggested that knockdown of TLR4 decreased the phosphorylation of IRAK1 and inhibitor of NF-kB (IkB-α) upon HSV-2 infection. Finally, decreased expression of either TLR4 or MyD88/Mal alone or both significantly abolished productions of IL-6 and IFN-β by ELISA analysis. Taken together, our results from the in vitro infection model reveal for the first time that there exists the pathway via TLR4-Mal/MyD88-IRAK1-NF-kB axis in human cervical epithelial cells in response to HSV-2 infection. |
---|---|
ISSN: | 1932-6203 |