Mathematical modelling of the quenching process of 6061 aluminium alloy plates

In recent decades, due to the increase in computing power, mathematical modelling has experienced a fulminant development in almost all areas. The aluminium industry is one of these areas. One of the main processes for improving the properties of certain aluminium alloys is the solution heat treatme...

Full description

Bibliographic Details
Main Authors: Petre Marin, Efrem Raluca, Drăghici Nicuşor Constantin, Achim Alexandra Valerica
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:ITM Web of Conferences
Online Access:https://www.itm-conferences.org/articles/itmconf/pdf/2020/04/itmconf_icamnm2020_02008.pdf
Description
Summary:In recent decades, due to the increase in computing power, mathematical modelling has experienced a fulminant development in almost all areas. The aluminium industry is one of these areas. One of the main processes for improving the properties of certain aluminium alloys is the solution heat treatment and quenching process. The most common quenchant used for aluminium alloys is water. The main advantage of using a water quenchant is that water can provide the rapid quenching. By considering the temperature dependence of the thermo-physical properties, the non-linear thermo-mechanical direct coupled analysis of the quenching process for a 6061 aluminium alloy plate was achieved. The structural stress due to solid thermal effects were studied by using ANSYS finite element software. The quenching rate, which determines the plate deformation after quenching, was estimated and validated on independent equipment for the research of aluminium alloy quenching process. The developed mathematical model serves as a tool by simulation of various scenarios that may occur in the industrial process.
ISSN:2271-2097