Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model.
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along wate...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4500458?pdf=render |
id |
doaj-860cf448beb5474287c53f93b18ef54d |
---|---|
record_format |
Article |
spelling |
doaj-860cf448beb5474287c53f93b18ef54d2020-11-25T02:33:35ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01107e013163010.1371/journal.pone.0131630Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model.Hui FuJiayou ZhongGuixiang YuanChunjing GuoQian LouWei ZhangJun XuLeyi NiPing XieTe CaoTrait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology.http://europepmc.org/articles/PMC4500458?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hui Fu Jiayou Zhong Guixiang Yuan Chunjing Guo Qian Lou Wei Zhang Jun Xu Leyi Ni Ping Xie Te Cao |
spellingShingle |
Hui Fu Jiayou Zhong Guixiang Yuan Chunjing Guo Qian Lou Wei Zhang Jun Xu Leyi Ni Ping Xie Te Cao Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. PLoS ONE |
author_facet |
Hui Fu Jiayou Zhong Guixiang Yuan Chunjing Guo Qian Lou Wei Zhang Jun Xu Leyi Ni Ping Xie Te Cao |
author_sort |
Hui Fu |
title |
Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. |
title_short |
Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. |
title_full |
Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. |
title_fullStr |
Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. |
title_full_unstemmed |
Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model. |
title_sort |
predicting changes in macrophyte community structure from functional traits in a freshwater lake: a test of maximum entropy model. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. |
url |
http://europepmc.org/articles/PMC4500458?pdf=render |
work_keys_str_mv |
AT huifu predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT jiayouzhong predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT guixiangyuan predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT chunjingguo predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT qianlou predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT weizhang predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT junxu predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT leyini predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT pingxie predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel AT tecao predictingchangesinmacrophytecommunitystructurefromfunctionaltraitsinafreshwaterlakeatestofmaximumentropymodel |
_version_ |
1724812972438585344 |