Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations

Blood flow restriction (BFR) resistance training leads to increased muscle mass and strength but the progression leading to adaptations may be different as strength gains are often to a lesser magnitude than high-load (HL) training. The impact of training loads and repetitions on older adults’ muscl...

Full description

Bibliographic Details
Main Authors: Summer B. Cook, Christopher J. Cleary
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-06-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphys.2019.00738/full
id doaj-860ad3a73f454fc4aa6b19431b7764ea
record_format Article
spelling doaj-860ad3a73f454fc4aa6b19431b7764ea2020-11-25T01:01:27ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2019-06-011010.3389/fphys.2019.00738444564Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility LimitationsSummer B. CookChristopher J. ClearyBlood flow restriction (BFR) resistance training leads to increased muscle mass and strength but the progression leading to adaptations may be different as strength gains are often to a lesser magnitude than high-load (HL) training. The impact of training loads and repetitions on older adults’ muscle mass and strength following BFR or HL training was evaluated. Twenty-one older adults (67–90 years) classified as being at risk of mobility limitations were randomly assigned to HL (n = 11) or BFR (n = 10) knee extension (KE) and flexion (KF) training twice per week for 12 weeks. Strength was measured with 10-repetition maximum (10-RM) tests and isometric contractions. Cross-sectional area (CSA) of the quadriceps and hamstrings was measured. HL and BFR interventions increased 10-RM KF and isometric strength (P < 0.05) and hamstrings CSA increased an average of 4.8 ± 5.9% after HL and BFR training (time main effect P < 0.01). There were no differences between the training groups (time x group interactions P > 0.05). The rate of progression of KF training load and repetitions was comparable (time × group interactions of each variable P > 0.05). The groups averaged an increase of 0.50 ± 25 kg⋅week-1 and 1.8 ± 0.1.7 repetitions⋅week-1 of training (time main effects P < 0.05). The HL training group experienced greater improvements in KE 10-RM strength than the BFR group (60.7 ± 36.0% vs. 35.3 ± 25.5%; P = 0.03). In both groups, isometric KE strength increased 17.3 ± 18.5% (P = 0.001) and there were no differences between groups (P = 0.24). Quadriceps CSA increased (time main effect P < 0.01) and to similar magnitudes (time x group interaction P = 0.62) following HL (6.5 ± 3.1%) and BFR training (7.8 ± 8.2%). The HL group experienced accelerated progression of load when compared to BFR (0.90 ± 0.60 kg⋅week-1 vs. 30 ± 0.21 kg⋅week-1; P = 0.006) but was not different when expressed in relative terms. BFR training progressed at a rate of 3.6 ± 1.3 repetitions⋅week-1 while the HL group progressed at 2.2 ± 0.43 repetitions⋅week-1 (P = 0.003). HL training led to greater increases in KE 10-RM and it may be attributed to the greater load and/or faster rate of progression of the load throughout the 12-week training period and the specificity of the testing modality. Incorporating systematic load progression throughout BFR training periods should be employed to lead to maximal strength gains.https://www.frontiersin.org/article/10.3389/fphys.2019.00738/fullresistance trainingprogressionolder adultsblood flow restrictionhypertrophy
collection DOAJ
language English
format Article
sources DOAJ
author Summer B. Cook
Christopher J. Cleary
spellingShingle Summer B. Cook
Christopher J. Cleary
Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
Frontiers in Physiology
resistance training
progression
older adults
blood flow restriction
hypertrophy
author_facet Summer B. Cook
Christopher J. Cleary
author_sort Summer B. Cook
title Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
title_short Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
title_full Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
title_fullStr Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
title_full_unstemmed Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
title_sort progression of blood flow restricted resistance training in older adults at risk of mobility limitations
publisher Frontiers Media S.A.
series Frontiers in Physiology
issn 1664-042X
publishDate 2019-06-01
description Blood flow restriction (BFR) resistance training leads to increased muscle mass and strength but the progression leading to adaptations may be different as strength gains are often to a lesser magnitude than high-load (HL) training. The impact of training loads and repetitions on older adults’ muscle mass and strength following BFR or HL training was evaluated. Twenty-one older adults (67–90 years) classified as being at risk of mobility limitations were randomly assigned to HL (n = 11) or BFR (n = 10) knee extension (KE) and flexion (KF) training twice per week for 12 weeks. Strength was measured with 10-repetition maximum (10-RM) tests and isometric contractions. Cross-sectional area (CSA) of the quadriceps and hamstrings was measured. HL and BFR interventions increased 10-RM KF and isometric strength (P < 0.05) and hamstrings CSA increased an average of 4.8 ± 5.9% after HL and BFR training (time main effect P < 0.01). There were no differences between the training groups (time x group interactions P > 0.05). The rate of progression of KF training load and repetitions was comparable (time × group interactions of each variable P > 0.05). The groups averaged an increase of 0.50 ± 25 kg⋅week-1 and 1.8 ± 0.1.7 repetitions⋅week-1 of training (time main effects P < 0.05). The HL training group experienced greater improvements in KE 10-RM strength than the BFR group (60.7 ± 36.0% vs. 35.3 ± 25.5%; P = 0.03). In both groups, isometric KE strength increased 17.3 ± 18.5% (P = 0.001) and there were no differences between groups (P = 0.24). Quadriceps CSA increased (time main effect P < 0.01) and to similar magnitudes (time x group interaction P = 0.62) following HL (6.5 ± 3.1%) and BFR training (7.8 ± 8.2%). The HL group experienced accelerated progression of load when compared to BFR (0.90 ± 0.60 kg⋅week-1 vs. 30 ± 0.21 kg⋅week-1; P = 0.006) but was not different when expressed in relative terms. BFR training progressed at a rate of 3.6 ± 1.3 repetitions⋅week-1 while the HL group progressed at 2.2 ± 0.43 repetitions⋅week-1 (P = 0.003). HL training led to greater increases in KE 10-RM and it may be attributed to the greater load and/or faster rate of progression of the load throughout the 12-week training period and the specificity of the testing modality. Incorporating systematic load progression throughout BFR training periods should be employed to lead to maximal strength gains.
topic resistance training
progression
older adults
blood flow restriction
hypertrophy
url https://www.frontiersin.org/article/10.3389/fphys.2019.00738/full
work_keys_str_mv AT summerbcook progressionofbloodflowrestrictedresistancetraininginolderadultsatriskofmobilitylimitations
AT christopherjcleary progressionofbloodflowrestrictedresistancetraininginolderadultsatriskofmobilitylimitations
_version_ 1725209445321932800