Random selection of factors preserves the correlation structure in a linear factor model to a high degree.

In a very high-dimensional vector space, two randomly-chosen vectors are almost orthogonal with high probability. Starting from this observation, we develop a statistical factor model, the random factor model, in which factors are chosen stochastically based on the random projection method. Randomne...

Full description

Bibliographic Details
Main Authors: Antti J Tanskanen, Jani Lukkarinen, Kari Vatanen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0206551
Description
Summary:In a very high-dimensional vector space, two randomly-chosen vectors are almost orthogonal with high probability. Starting from this observation, we develop a statistical factor model, the random factor model, in which factors are chosen stochastically based on the random projection method. Randomness of factors has the consequence that correlation and covariance matrices are well preserved in a linear factor representation. It also enables derivation of probabilistic bounds for the accuracy of the random factor representation of time-series, their cross-correlations and covariances. As an application, we analyze reproduction of time-series and their cross-correlation coefficients in the well-diversified Russell 3,000 equity index.
ISSN:1932-6203