In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice
Mohammed A Al Gurabi, Daoud Ali, Saad Alkahtani, Saud Alarifi Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia Abstract: Nanoparticles can potentially cause adverse effects on organs, tissue, cell levels, and protein levels because of their physicochem...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2015-01-01
|
Series: | OncoTargets and Therapy |
Online Access: | http://www.dovepress.com/in-vivo-dna-damaging-and-apoptotic-potential-ofnbspsilver-nanoparticle-peer-reviewed-article-OTT |
id |
doaj-85e925c67beb45c79b6fcb786f22afe4 |
---|---|
record_format |
Article |
spelling |
doaj-85e925c67beb45c79b6fcb786f22afe42020-11-24T22:27:30ZengDove Medical PressOncoTargets and Therapy1178-69302015-01-012015default29530220199In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino miceAl Gurabi MAAli DAlkahtani SAlarifi S Mohammed A Al Gurabi, Daoud Ali, Saad Alkahtani, Saud Alarifi Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia Abstract: Nanoparticles can potentially cause adverse effects on organs, tissue, cell levels, and protein levels because of their physicochemical properties. Silver nanoparticles (AgNPs) are being used on a wide scale in world consumer markets; their potential hazards for humans remain largely unknown. This study aimed to investigate the intraperitoneal toxicity of AgNPs (26 mg per kg of body weight, 52 mg per kg of body weight, and 78 mg per kg of body weight) over 72 hours in Swiss albino mice. AgNPs induced a significant increase in serum liver injury markers including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Induction of DNA damage was also studied in mice injected with AgNPs. Apoptosis (detected by using the terminal deoxynucleotidyl transferase deoxyuridine triphosphatase nick end labeling assay method) in liver tissue and DNA strand breaks (detected by using the comet assay method) in lymphocytes revealed that a concentration of 78 mg of AgNPs per kg body weight can cause significant apoptosis and DNA damage. The DNA damage and apoptosis raise the concern about the safety associated with application of the AgNPs. Significantly more alterations were induced in the hepatocytes of animals exposed to AgNP doses than in the control animals. The induced histological and apoptotic changes may be due to AgNP toxicity. immunohistochemical and ultrastructural of AgNP. Keywords: silver nanoparticles, liver tissue, histology, apoptosis, DNA damage, Swiss albino micehttp://www.dovepress.com/in-vivo-dna-damaging-and-apoptotic-potential-ofnbspsilver-nanoparticle-peer-reviewed-article-OTT |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Al Gurabi MA Ali D Alkahtani S Alarifi S |
spellingShingle |
Al Gurabi MA Ali D Alkahtani S Alarifi S In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice OncoTargets and Therapy |
author_facet |
Al Gurabi MA Ali D Alkahtani S Alarifi S |
author_sort |
Al Gurabi MA |
title |
In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice |
title_short |
In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice |
title_full |
In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice |
title_fullStr |
In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice |
title_full_unstemmed |
In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice |
title_sort |
in vivo dna damaging and apoptotic potential of silver nanoparticles in swiss albino mice |
publisher |
Dove Medical Press |
series |
OncoTargets and Therapy |
issn |
1178-6930 |
publishDate |
2015-01-01 |
description |
Mohammed A Al Gurabi, Daoud Ali, Saad Alkahtani, Saud Alarifi Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia Abstract: Nanoparticles can potentially cause adverse effects on organs, tissue, cell levels, and protein levels because of their physicochemical properties. Silver nanoparticles (AgNPs) are being used on a wide scale in world consumer markets; their potential hazards for humans remain largely unknown. This study aimed to investigate the intraperitoneal toxicity of AgNPs (26 mg per kg of body weight, 52 mg per kg of body weight, and 78 mg per kg of body weight) over 72 hours in Swiss albino mice. AgNPs induced a significant increase in serum liver injury markers including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Induction of DNA damage was also studied in mice injected with AgNPs. Apoptosis (detected by using the terminal deoxynucleotidyl transferase deoxyuridine triphosphatase nick end labeling assay method) in liver tissue and DNA strand breaks (detected by using the comet assay method) in lymphocytes revealed that a concentration of 78 mg of AgNPs per kg body weight can cause significant apoptosis and DNA damage. The DNA damage and apoptosis raise the concern about the safety associated with application of the AgNPs. Significantly more alterations were induced in the hepatocytes of animals exposed to AgNP doses than in the control animals. The induced histological and apoptotic changes may be due to AgNP toxicity. immunohistochemical and ultrastructural of AgNP. Keywords: silver nanoparticles, liver tissue, histology, apoptosis, DNA damage, Swiss albino mice |
url |
http://www.dovepress.com/in-vivo-dna-damaging-and-apoptotic-potential-ofnbspsilver-nanoparticle-peer-reviewed-article-OTT |
work_keys_str_mv |
AT algurabima invivodnadamagingandapoptoticpotentialofnbspsilvernanoparticlesinswissalbinomice AT alid invivodnadamagingandapoptoticpotentialofnbspsilvernanoparticlesinswissalbinomice AT alkahtanis invivodnadamagingandapoptoticpotentialofnbspsilvernanoparticlesinswissalbinomice AT alarifis invivodnadamagingandapoptoticpotentialofnbspsilvernanoparticlesinswissalbinomice |
_version_ |
1725749741530120192 |