A Hybrid VLC-RF Portable Phasor Measurement Unit for Deep Tunnels

In this manuscript we propose a hybrid Visible Light Communication and Radio Frequency (VLC-RF) scheme for the implementation of a portable Phaser Measurement Unit (PMU) for deep underground tunnels. Through computer simulations and laboratory measurements we are capable of providing Coordinated Uni...

Full description

Bibliographic Details
Main Authors: Ismael Soto, Rafael Nilson Rodrigues, Gabriel Massuyama, Fabian Seguel, Pablo Palacios Játiva, Cesar A. Azurdia-Meza, Nicolas Krommenacker
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/3/790
Description
Summary:In this manuscript we propose a hybrid Visible Light Communication and Radio Frequency (VLC-RF) scheme for the implementation of a portable Phaser Measurement Unit (PMU) for deep underground tunnels. Through computer simulations and laboratory measurements we are capable of providing Coordinated Universal Time (UTC) to the PMUs, as well as high accuracy positioning in a Global Positioning System (GPS) denied environment. The estimated PMU position, time stamp, and electrical power system measurements are sent to a central monitoring station using a radio frequency uplink with a data rate of hundreds of Kbps. Simulations and experimental measurements show that the proposed scheme can be used to control a large number of VLC-RF PMU devices inside a tunnel. The tests demonstrate the viability of the hybrid prototype, which will improve performance compared to commercial PMUs that lack these features.
ISSN:1424-8220