Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19
Summary: COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and int...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | iScience |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004221007203 |
id |
doaj-85ba52946c9d45b1870170d0ebc5237c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marcel S. Woo Friedrich Haag Axel Nierhaus Dominik Jarczak Kevin Roedl Christina Mayer Thomas T. Brehm Marc van der Meirschen Annette Hennigs Maximilian Christopeit Walter Fiedler Panagiotis Karagiannis Christoph Burdelski Alexander Schultze Samuel Huber Marylyn M. Addo Stefan Schmiedel Manuel A. Friese Stefan Kluge Julian Schulze zur Wiesch |
spellingShingle |
Marcel S. Woo Friedrich Haag Axel Nierhaus Dominik Jarczak Kevin Roedl Christina Mayer Thomas T. Brehm Marc van der Meirschen Annette Hennigs Maximilian Christopeit Walter Fiedler Panagiotis Karagiannis Christoph Burdelski Alexander Schultze Samuel Huber Marylyn M. Addo Stefan Schmiedel Manuel A. Friese Stefan Kluge Julian Schulze zur Wiesch Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 iScience Immunology Virology systems biology |
author_facet |
Marcel S. Woo Friedrich Haag Axel Nierhaus Dominik Jarczak Kevin Roedl Christina Mayer Thomas T. Brehm Marc van der Meirschen Annette Hennigs Maximilian Christopeit Walter Fiedler Panagiotis Karagiannis Christoph Burdelski Alexander Schultze Samuel Huber Marylyn M. Addo Stefan Schmiedel Manuel A. Friese Stefan Kluge Julian Schulze zur Wiesch |
author_sort |
Marcel S. Woo |
title |
Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 |
title_short |
Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 |
title_full |
Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 |
title_fullStr |
Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 |
title_full_unstemmed |
Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19 |
title_sort |
multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe covid-19 |
publisher |
Elsevier |
series |
iScience |
issn |
2589-0042 |
publishDate |
2021-07-01 |
description |
Summary: COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and integrated more than 150 clinical, laboratory, and immunological parameters of 173 patients with mild to fatal COVID-19. Using systems biology, we detected progressive dysregulation of multiple parameters indicative of organ damage that correlated with disease severity, particularly affecting kidneys, hepatobiliary system, and immune landscape. By performing unsupervised clustering and trajectory analysis, we identified T and B cell depletion as early indicators of a complicated disease course. In addition, markers of hepatobiliary damage emerged as robust predictor of lethal outcome in critically ill patients. This allowed us to propose a novel clinical COVID-19 SeveriTy (COST) score that distinguishes complicated disease trajectories and predicts lethal outcome in critically ill patients. |
topic |
Immunology Virology systems biology |
url |
http://www.sciencedirect.com/science/article/pii/S2589004221007203 |
work_keys_str_mv |
AT marcelswoo multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT friedrichhaag multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT axelnierhaus multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT dominikjarczak multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT kevinroedl multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT christinamayer multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT thomastbrehm multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT marcvandermeirschen multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT annettehennigs multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT maximilianchristopeit multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT walterfiedler multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT panagiotiskaragiannis multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT christophburdelski multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT alexanderschultze multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT samuelhuber multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT marylynmaddo multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT stefanschmiedel multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT manuelafriese multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT stefankluge multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 AT julianschulzezurwiesch multidimensionalandlongitudinalsystemsprofilingrevealspredictivepatternofseverecovid19 |
_version_ |
1721290524373024768 |
spelling |
doaj-85ba52946c9d45b1870170d0ebc5237c2021-07-23T04:50:27ZengElsevieriScience2589-00422021-07-01247102752Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19Marcel S. Woo0Friedrich Haag1Axel Nierhaus2Dominik Jarczak3Kevin Roedl4Christina Mayer5Thomas T. Brehm6Marc van der Meirschen7Annette Hennigs8Maximilian Christopeit9Walter Fiedler10Panagiotis Karagiannis11Christoph Burdelski12Alexander Schultze13Samuel Huber14Marylyn M. Addo15Stefan Schmiedel16Manuel A. Friese17Stefan Kluge18Julian Schulze zur Wiesch19Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyInstitute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyDepartment of Emergency Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Center for Infection Research (DZIF), University Medical Center Hamburg-Eppendorf, Lübeck - Borstel - Riems, Hamburg, GermanyInstitute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Corresponding authorDepartment of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, GermanyI. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Corresponding authorSummary: COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and integrated more than 150 clinical, laboratory, and immunological parameters of 173 patients with mild to fatal COVID-19. Using systems biology, we detected progressive dysregulation of multiple parameters indicative of organ damage that correlated with disease severity, particularly affecting kidneys, hepatobiliary system, and immune landscape. By performing unsupervised clustering and trajectory analysis, we identified T and B cell depletion as early indicators of a complicated disease course. In addition, markers of hepatobiliary damage emerged as robust predictor of lethal outcome in critically ill patients. This allowed us to propose a novel clinical COVID-19 SeveriTy (COST) score that distinguishes complicated disease trajectories and predicts lethal outcome in critically ill patients.http://www.sciencedirect.com/science/article/pii/S2589004221007203ImmunologyVirologysystems biology |