First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

A prototype cavity for the annular-ring coupled structure (ACS) for use in the Japan Proton Accelerator Research Complex (J-PARC) linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cell...

Full description

Bibliographic Details
Main Authors: Hiroyuki Ao, Yoshishige Yamazaki
Format: Article
Language:English
Published: American Physical Society 2012-01-01
Series:Physical Review Special Topics. Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevSTAB.15.011001
Description
Summary:A prototype cavity for the annular-ring coupled structure (ACS) for use in the Japan Proton Accelerator Research Complex (J-PARC) linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.
ISSN:1098-4402