Microstructure characterization and quantitative analysis of copper alloy matrix composites reinforced with WC-xNi powders prepared by spontaneous infiltration

In this study, copper alloy matrix composites reinforced with tungsten carbide (WC) particles with the addition of different Ni contents (0, 3, 5, 7, and 10 wt.%) were prepared by the spontaneous infiltration process. Image analysis was used to quantify the microstructural parameters, such as the pa...

Full description

Bibliographic Details
Main Authors: Daoud I., Miroud Dj., Yamanoglu R.
Format: Article
Language:English
Published: Technical Faculty, Bor 2018-01-01
Series:Journal of Mining and Metallurgy. Section B: Metallurgy
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1450-5339/2018/1450-53391800005D.pdf
Description
Summary:In this study, copper alloy matrix composites reinforced with tungsten carbide (WC) particles with the addition of different Ni contents (0, 3, 5, 7, and 10 wt.%) were prepared by the spontaneous infiltration process. Image analysis was used to quantify the microstructural parameters, such as the particle size and distribution, area fraction, binder mean free path, and pore size. The effect of Ni addition on the microstructure, density and hardness are discussed. The results show that a small addition of Ni improves the densification of the infiltrated composites. The highest density value of 11.84 g/cm3 with a hardness of 327 HV was obtained for the infiltrated composite with the addition of 3 wt.% of Ni. The quantitative analysis results are in good agreement with the microstructure properties and hardness results.
ISSN:1450-5339
2217-7175