Biodata Mining of Differentially Expressed Genes between Acute Myocardial Infarction and Unstable Angina Based on Integrated Bioinformatics

Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable ang...

Full description

Bibliographic Details
Main Authors: Siyu Guo, Zhihong Huang, Xinkui Liu, Jingyuan Zhang, Peizhi Ye, Chao Wu, Shan Lu, Shanshan Jia, Xiaomeng Zhang, Xiuping Chen, Miaomiao Wang, Jiarui Wu
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2021/5584681
Description
Summary:Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable angina (UA). The GSE29111 and GSE60993 datasets containing microarray data from AMI and UA patients were downloaded from the Gene Expression Omnibus (GEO) database. DEG analysis of these 2 datasets is performed using the “limma” package in R software. DEGs were also analyzed using protein-protein interaction (PPI), Molecular Complex Detection (MCODE) algorithm, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Correlation analysis and “cytoHubba” were used to analyze the hub genes. A total of 286 DEGs were obtained from GSE29111 and GSE60993, including 132 upregulated genes and 154 downregulated genes. Subsequent comprehensive analysis identified 20 key genes that may be related to the occurrence and development of AMI and UA and were involved in the inflammatory response, interaction of neuroactive ligand-receptor, calcium signaling pathway, inflammatory mediator regulation of TRP channels, viral protein interaction with cytokine and cytokine receptor, human cytomegalovirus infection, and cytokine-cytokine receptor interaction pathway. The integrated bioinformatical analysis could improve our understanding of DEGs between AMI and UA. The results of this study might provide a new perspective and reference for the early diagnosis and treatment of ACS.
ISSN:2314-6141