Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems

We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices....

Full description

Bibliographic Details
Main Authors: Daniel Ahmed, Xiaolei Peng, Adem Ozcelik, Yuebing Zheng, Tony Jun Huang
Format: Article
Language:English
Published: AIP Publishing LLC 2015-09-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4931641
Description
Summary:We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our “acousto-plasmofluidic” device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.
ISSN:2158-3226