Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the...

Full description

Bibliographic Details
Main Authors: Nicholus Mboga, Stefano D’Aronco, Tais Grippa, Charlotte Pelletier, Stefanos Georganos, Sabine Vanhuysse, Eléonore Wolff, Benoît Smets, Olivier Dewitte, Moritz Lennert, Jan Dirk Wegner
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/10/8/523
id doaj-85681d387c66413c9526869838b32321
record_format Article
spelling doaj-85681d387c66413c9526869838b323212021-08-26T13:50:53ZengMDPI AGISPRS International Journal of Geo-Information2220-99642021-08-011052352310.3390/ijgi10080523Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central AfricaNicholus Mboga0Stefano D’Aronco1Tais Grippa2Charlotte Pelletier3Stefanos Georganos4Sabine Vanhuysse5Eléonore Wolff6Benoît Smets7Olivier Dewitte8Moritz Lennert9Jan Dirk Wegner10Department of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumEcoVision Lab, Photogrammetry and Remote Sensing, IGP, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, SwitzerlandDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumIRISA UMR CNRS 6074, Campus de Tohannic, Université Bretagne Sud, BP 573, 56000 Vannes, FranceDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, BelgiumDepartment of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumEcoVision Lab, Photogrammetry and Remote Sensing, IGP, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, SwitzerlandMultitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.https://www.mdpi.com/2220-9964/10/8/523unsupervised domain adaptationadversarial learningcorrelation alignmenthistorical panchromatic orthomosaicsland-cover mappingfully convolutional networks
collection DOAJ
language English
format Article
sources DOAJ
author Nicholus Mboga
Stefano D’Aronco
Tais Grippa
Charlotte Pelletier
Stefanos Georganos
Sabine Vanhuysse
Eléonore Wolff
Benoît Smets
Olivier Dewitte
Moritz Lennert
Jan Dirk Wegner
spellingShingle Nicholus Mboga
Stefano D’Aronco
Tais Grippa
Charlotte Pelletier
Stefanos Georganos
Sabine Vanhuysse
Eléonore Wolff
Benoît Smets
Olivier Dewitte
Moritz Lennert
Jan Dirk Wegner
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
ISPRS International Journal of Geo-Information
unsupervised domain adaptation
adversarial learning
correlation alignment
historical panchromatic orthomosaics
land-cover mapping
fully convolutional networks
author_facet Nicholus Mboga
Stefano D’Aronco
Tais Grippa
Charlotte Pelletier
Stefanos Georganos
Sabine Vanhuysse
Eléonore Wolff
Benoît Smets
Olivier Dewitte
Moritz Lennert
Jan Dirk Wegner
author_sort Nicholus Mboga
title Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
title_short Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
title_full Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
title_fullStr Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
title_full_unstemmed Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
title_sort domain adaptation for semantic segmentation of historical panchromatic orthomosaics in central africa
publisher MDPI AG
series ISPRS International Journal of Geo-Information
issn 2220-9964
publishDate 2021-08-01
description Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.
topic unsupervised domain adaptation
adversarial learning
correlation alignment
historical panchromatic orthomosaics
land-cover mapping
fully convolutional networks
url https://www.mdpi.com/2220-9964/10/8/523
work_keys_str_mv AT nicholusmboga domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT stefanodaronco domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT taisgrippa domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT charlottepelletier domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT stefanosgeorganos domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT sabinevanhuysse domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT eleonorewolff domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT benoitsmets domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT olivierdewitte domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT moritzlennert domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
AT jandirkwegner domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica
_version_ 1721192827937882112