Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa
Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | ISPRS International Journal of Geo-Information |
Subjects: | |
Online Access: | https://www.mdpi.com/2220-9964/10/8/523 |
id |
doaj-85681d387c66413c9526869838b32321 |
---|---|
record_format |
Article |
spelling |
doaj-85681d387c66413c9526869838b323212021-08-26T13:50:53ZengMDPI AGISPRS International Journal of Geo-Information2220-99642021-08-011052352310.3390/ijgi10080523Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central AfricaNicholus Mboga0Stefano D’Aronco1Tais Grippa2Charlotte Pelletier3Stefanos Georganos4Sabine Vanhuysse5Eléonore Wolff6Benoît Smets7Olivier Dewitte8Moritz Lennert9Jan Dirk Wegner10Department of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumEcoVision Lab, Photogrammetry and Remote Sensing, IGP, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, SwitzerlandDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumIRISA UMR CNRS 6074, Campus de Tohannic, Université Bretagne Sud, BP 573, 56000 Vannes, FranceDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumDepartment of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, BelgiumDepartment of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, BelgiumDepartment of Geosciences, Environment & Society, Université Libre de Bruxelles, Av Franklin Roosevelt 50, 1050 Brussels, BelgiumEcoVision Lab, Photogrammetry and Remote Sensing, IGP, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, SwitzerlandMultitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.https://www.mdpi.com/2220-9964/10/8/523unsupervised domain adaptationadversarial learningcorrelation alignmenthistorical panchromatic orthomosaicsland-cover mappingfully convolutional networks |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nicholus Mboga Stefano D’Aronco Tais Grippa Charlotte Pelletier Stefanos Georganos Sabine Vanhuysse Eléonore Wolff Benoît Smets Olivier Dewitte Moritz Lennert Jan Dirk Wegner |
spellingShingle |
Nicholus Mboga Stefano D’Aronco Tais Grippa Charlotte Pelletier Stefanos Georganos Sabine Vanhuysse Eléonore Wolff Benoît Smets Olivier Dewitte Moritz Lennert Jan Dirk Wegner Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa ISPRS International Journal of Geo-Information unsupervised domain adaptation adversarial learning correlation alignment historical panchromatic orthomosaics land-cover mapping fully convolutional networks |
author_facet |
Nicholus Mboga Stefano D’Aronco Tais Grippa Charlotte Pelletier Stefanos Georganos Sabine Vanhuysse Eléonore Wolff Benoît Smets Olivier Dewitte Moritz Lennert Jan Dirk Wegner |
author_sort |
Nicholus Mboga |
title |
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa |
title_short |
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa |
title_full |
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa |
title_fullStr |
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa |
title_full_unstemmed |
Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa |
title_sort |
domain adaptation for semantic segmentation of historical panchromatic orthomosaics in central africa |
publisher |
MDPI AG |
series |
ISPRS International Journal of Geo-Information |
issn |
2220-9964 |
publishDate |
2021-08-01 |
description |
Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved. |
topic |
unsupervised domain adaptation adversarial learning correlation alignment historical panchromatic orthomosaics land-cover mapping fully convolutional networks |
url |
https://www.mdpi.com/2220-9964/10/8/523 |
work_keys_str_mv |
AT nicholusmboga domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT stefanodaronco domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT taisgrippa domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT charlottepelletier domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT stefanosgeorganos domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT sabinevanhuysse domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT eleonorewolff domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT benoitsmets domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT olivierdewitte domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT moritzlennert domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica AT jandirkwegner domainadaptationforsemanticsegmentationofhistoricalpanchromaticorthomosaicsincentralafrica |
_version_ |
1721192827937882112 |