Summary: | Regional remote sensing image products are playing an important role in an increasing number of application fields. Aiming at multi-satellite imaging task planning for large-area image acquisition, this paper proposes a multi-objective modeling method. First, we analyzed the core requirements of regional mapping for multi-satellite imaging mission planning: Full coverage of the target area and low consumption of satellite resources. Second, an optimization model with two objective functions, namely the maximum target area coverage and minimum satellite resource utilization, was established. Using the selection of imaging strips and their swing angles as two types of decision variables, the regional decomposition and satellite resource allocation were integrated into the planning model. Third, two efficient algorithms, Vatti and non-dominated sorting genetic algorithm (NSGA-II), were used for objective function calculation and model solving, respectively. Finally, the experiments used Hubei, Finland, and Congo as the target areas and GF1, GF6, ZY1-02C, and ZY3 as imaging satellites to verify the modeling method proposed in this paper. The experiments showed that the proposed multi-objective modeling method could complete the coverage of regional targets with fewer satellite resources and improve the satellite application efficiency significantly.
|