Image Hashing for Tamper Detection with Multiview Embedding and Perceptual Saliency

Perceptual hashing technique for tamper detection has been intensively investigated owing to the speed and memory efficiency. Recent researches have shown that leveraging supervised information could lead to learn a high-quality hashing code. However, most existing methods generate hashing code by t...

Full description

Bibliographic Details
Main Authors: Ling Du, Zhen Chen, Yongzhen Ke
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Multimedia
Online Access:http://dx.doi.org/10.1155/2018/4235268
Description
Summary:Perceptual hashing technique for tamper detection has been intensively investigated owing to the speed and memory efficiency. Recent researches have shown that leveraging supervised information could lead to learn a high-quality hashing code. However, most existing methods generate hashing code by treating each region equally while ignoring the different perceptual saliency relating to the semantic information. We argue that the integrity for salient objects is more critical and important to be verified, since the semantic content is highly connected to them. In this paper, we propose a Multi-View Semi-supervised Hashing algorithm with Perceptual Saliency (MV-SHPS), which explores supervised information and multiple features into hashing learning simultaneously. Our method calculates the image hashing distance by taking into account the perceptual saliency rather than directly considering the distance value between total images. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.
ISSN:1687-5680
1687-5699