Development of an Integrated Chip for Automatic Tracking and Positioning Manipulation for Single Cell Lysis

This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lys...

Full description

Bibliographic Details
Main Authors: Chao-Wang Young, Chyung Ay, Jia-Ling Hsieh
Format: Article
Language:English
Published: MDPI AG 2012-02-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/12/3/2400/
Description
Summary:This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.
ISSN:1424-8220