Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review
Parkinson’s disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and lo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2014/371256 |
id |
doaj-8515586ee8b844719a7db985105208e7 |
---|---|
record_format |
Article |
spelling |
doaj-8515586ee8b844719a7db985105208e72020-11-24T20:55:11ZengHindawi LimitedBioMed Research International2314-61332314-61412014-01-01201410.1155/2014/371256371256Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary ReviewXinglong Yang0Yanming Xu1Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, ChinaDepartment of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, ChinaParkinson’s disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets.http://dx.doi.org/10.1155/2014/371256 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xinglong Yang Yanming Xu |
spellingShingle |
Xinglong Yang Yanming Xu Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review BioMed Research International |
author_facet |
Xinglong Yang Yanming Xu |
author_sort |
Xinglong Yang |
title |
Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review |
title_short |
Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review |
title_full |
Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review |
title_fullStr |
Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review |
title_full_unstemmed |
Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review |
title_sort |
mutations in the atp13a2 gene and parkinsonism: a preliminary review |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2014-01-01 |
description |
Parkinson’s disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets. |
url |
http://dx.doi.org/10.1155/2014/371256 |
work_keys_str_mv |
AT xinglongyang mutationsintheatp13a2geneandparkinsonismapreliminaryreview AT yanmingxu mutationsintheatp13a2geneandparkinsonismapreliminaryreview |
_version_ |
1716792262288998400 |