Summary: | Male infertility is caused by many factors including genetics. Although part of genetic damages are inherited and could be traced in blood leukocytes, but those de novo alterations induced in spermatogenesis are not part of diagnostic work up. De novo alterations might be the cause of many idiopathic conditions of male infertility. The aim of this study was to evaluate DNA damage, sex chromosomal aneuploidy and <em>DAZ</em> microdeletion in sperms of subfertile males in comparison with normal healthy individuals. Whole blood and semen samples were obtained from 75 subfertile and 45 normal men. Semen samples from karyotypically normal subfertile and normal individuals were used for DNA fragmentation, sex chromosome aneuploidy and <em>DAZ</em> microdeletion analysis. Sperm DNA damage was assessed by alkaline comet assay, chromosome aneuploidy and <em>DAZ</em> microdeletion was assessed using a combined primed in situ labeling and fluorescent in situ hybridization (PRINS-FISH) method. A significantly high percentage of DNA fragmentation was observed in subfertile patients compared to control. Similar observation was observed for sex chromosome aneuploidy and <em>DAZ</em> microdeletion (<em>p </em>< 0.01). A relatively small interindividual difference was seen in all three assays performed. However <em>DAZ </em>microdeletion was observed as mosaic form in Y bearing sperms. Results indicate that subfertile males experience higher genome instability in spermatogenesis expressed as DNA damage and consequently sperm chromosomal aneuploidy or microdeletions. Occurrence of de novo genetic alterations caused by environmental chemico-physical genotoxic agents during spermatogenesis might be one of the causes of idiopathic male infertility.
|