Effect of (Tb+Y)/Al ratio on Microstructure Evolution and Densification Process of (Tb0.6Y0.4)3Al5O12 Transparent Ceramics

(Tb0.6Y0.4)3Al5O12 transparent ceramics were successfully fabricated by solid-state reactive sintering using Tb4O7, Y2O3, and α-Al2O3 powders as raw materials. The effect of (Tb+Y)/Al ratio on microstructure evolution and densification process was investigated in detailed. The results show...

Full description

Bibliographic Details
Main Authors: Zhong Wan, Yinzhen Wang, Jian Zhang, Shiwei Wang, Dan Han, Junping Wang, Dewen Wang
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/12/2/300
Description
Summary:(Tb0.6Y0.4)3Al5O12 transparent ceramics were successfully fabricated by solid-state reactive sintering using Tb4O7, Y2O3, and α-Al2O3 powders as raw materials. The effect of (Tb+Y)/Al ratio on microstructure evolution and densification process was investigated in detailed. The results showed that the grain growth kinetics were significantly affected by (Tb+Y)/Al ratio. Al-rich and Tb-rich phases appeared in part of the samples of different ratios. Particularly, excess aluminum increased the diffusing process, leading to a higher densification rate, while samples with excess terbium ratios displayed a smaller grain size and lower relative density. The optical quality was highly related to the amount of the secondary phase produced by different (Tb+Y)/Al ratios. Finally, (Tb0.6Y0.4)3Al5O12 transparent ceramics have been fabricated through pre-sintering in vacuum, followed by hot isostatic sintering (HIP), and the best transmittance of sample with a 4 mm thickness was approximately 78% at 1064 nm.
ISSN:1996-1944