Tolerance Analysis of Planar Mechanisms Based on a Residual Approach: A Complementary Method to DLM

The kinematic performance of mechanisms is affected by different uncertainty sources involved in the manufacturing and assembling cycle; among these are the geometric variations. It is known that the effects of these variations produce position errors which are not usually included in the design pro...

Full description

Bibliographic Details
Main Authors: Hector A. Tinoco, Sebastián Durango
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2019/9067624
Description
Summary:The kinematic performance of mechanisms is affected by different uncertainty sources involved in the manufacturing and assembling cycle; among these are the geometric variations. It is known that the effects of these variations produce position errors which are not usually included in the design process. With this objective, a complementary method for the tolerance analysis of planar mechanisms that incorporate geometric variations is presented in this paper. The approach is based on Direct Linearization Method (DLM) that does not consider all the kinematically admissible solutions. DLM naturally minimizes a residual functional H; however it is possible to maximize the residual by means of a proposed complementary method called H-Based Residual Method (RMH). From the proposed methodology, local and global error domains can be defined to predict the maximum and minimum position errors caused by the input variations. DLM and RMH were applied in a four-bar mechanism with dimensional and angular variations to estimate positioning errors. The results show intervals where output positions were invariant with respect to angular variations of the crank. These computations were performed through a distance ratio established with the output deviations determined with nominal angular variations. Furthermore, domain errors were predicted for a set of positions generated by a multivariate normal random algorithm with 1000 combinations of input variations (links lengths). These domains delimited all solutions created in each position stage. It means that by applying the proposed methodology it is possible to estimate the geometric errors of any combination of variations.
ISSN:1024-123X
1563-5147