The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph‎. ‎A set $D\subseteq V$ is a‎ ‎dominating set of $G$ if every vertex in $V\setminus D$ has at‎ ‎least one neighbor in $D$‎. ‎The distance $d_G(u,v)$ between two‎ ‎vertices $u$ and $v$ is the length of a shortest $(u,v)$-path in‎ ‎$G$‎. ‎An $(u,v)$-path of length $...

Full description

Bibliographic Details
Main Authors: M‎. ‎Dettlaff, ‎S‎. ‎Kosari, M‎. ‎Lema\'nska, ‎S.M‎. ‎Sheikholeslami‎
Format: Article
Language:English
Published: Azarbaijan Shahide Madani University 2016-06-01
Series:Communications in Combinatorics and Optimization
Subjects:
Online Access:http://comb-opt.azaruniv.ac.ir/article_13544.html
id doaj-84c0c8cb0ee14a4caaa6bc861e538aa1
record_format Article
spelling doaj-84c0c8cb0ee14a4caaa6bc861e538aa12020-11-25T02:01:08ZengAzarbaijan Shahide Madani UniversityCommunications in Combinatorics and Optimization 2538-21282538-21362016-06-0111435610.22049/CCO.2016.13544The convex domination subdivision number of a graphM‎. ‎Dettlaff0‎S‎. ‎Kosari1M‎. ‎Lema\'nska2‎S.M‎. ‎Sheikholeslami‎3Faculty of Applied Physics and Mathematics \\Gda\'nsk University of Technology‎, ‎ul‎. ‎Narutowicza 11/12 80-233‎, ‎Gda\'nsk‎, ‎PolandDepartment of Mathematics \\‎ ‎Azarbaijan Shahid Madani University‎, ‎Tabriz‎, ‎I.R‎. ‎IranFaculty of Applied Physics and Mathematics \\Gda\'nsk University of Technology‎, ‎ul‎. ‎Narutowicza 11/12 80-233‎, ‎Gda\'nsk‎, ‎PolandDepartment of Mathematics \\‎ ‎Azarbaijan Shahid Madani University‎, ‎Tabriz‎, ‎I.R‎. ‎IranLet $G=(V,E)$ be a simple graph‎. ‎A set $D\subseteq V$ is a‎ ‎dominating set of $G$ if every vertex in $V\setminus D$ has at‎ ‎least one neighbor in $D$‎. ‎The distance $d_G(u,v)$ between two‎ ‎vertices $u$ and $v$ is the length of a shortest $(u,v)$-path in‎ ‎$G$‎. ‎An $(u,v)$-path of length $d_G(u,v)$ is called an‎ ‎$(u,v)$-geodesic‎. ‎A set $X\subseteq V$ is convex in $G$ if‎ ‎vertices from all $(a‎, ‎b)$-geodesics belong to $X$ for any two‎ ‎vertices $a,b\in X$‎. ‎A set $X$ is a convex dominating set if it is‎ ‎convex and dominating set‎. ‎The {\em convex domination number}‎ ‎$\gamma_{\rm con}(G)$ of a graph $G$ equals the minimum‎ ‎cardinality of a convex dominating set in $G$‎. ‎{\em The convex‎ ‎domination subdivision number} sd$_{\gamma_{\rm con}}(G)$ is the‎ ‎minimum number of edges that must be subdivided (each edge in $G$‎ ‎can be subdivided at most once) in order to increase the convex‎ ‎domination number‎. ‎In this paper we initiate the study of convex‎ ‎domination subdivision number and we establish upper bounds for‎ ‎it‎.http://comb-opt.azaruniv.ac.ir/article_13544.htmlconvex dominating set‎‎convex domination number‎
collection DOAJ
language English
format Article
sources DOAJ
author M‎. ‎Dettlaff
‎S‎. ‎Kosari
M‎. ‎Lema\'nska
‎S.M‎. ‎Sheikholeslami‎
spellingShingle M‎. ‎Dettlaff
‎S‎. ‎Kosari
M‎. ‎Lema\'nska
‎S.M‎. ‎Sheikholeslami‎
The convex domination subdivision number of a graph
Communications in Combinatorics and Optimization
convex dominating set‎
‎convex domination number‎
author_facet M‎. ‎Dettlaff
‎S‎. ‎Kosari
M‎. ‎Lema\'nska
‎S.M‎. ‎Sheikholeslami‎
author_sort M‎. ‎Dettlaff
title The convex domination subdivision number of a graph
title_short The convex domination subdivision number of a graph
title_full The convex domination subdivision number of a graph
title_fullStr The convex domination subdivision number of a graph
title_full_unstemmed The convex domination subdivision number of a graph
title_sort convex domination subdivision number of a graph
publisher Azarbaijan Shahide Madani University
series Communications in Combinatorics and Optimization
issn 2538-2128
2538-2136
publishDate 2016-06-01
description Let $G=(V,E)$ be a simple graph‎. ‎A set $D\subseteq V$ is a‎ ‎dominating set of $G$ if every vertex in $V\setminus D$ has at‎ ‎least one neighbor in $D$‎. ‎The distance $d_G(u,v)$ between two‎ ‎vertices $u$ and $v$ is the length of a shortest $(u,v)$-path in‎ ‎$G$‎. ‎An $(u,v)$-path of length $d_G(u,v)$ is called an‎ ‎$(u,v)$-geodesic‎. ‎A set $X\subseteq V$ is convex in $G$ if‎ ‎vertices from all $(a‎, ‎b)$-geodesics belong to $X$ for any two‎ ‎vertices $a,b\in X$‎. ‎A set $X$ is a convex dominating set if it is‎ ‎convex and dominating set‎. ‎The {\em convex domination number}‎ ‎$\gamma_{\rm con}(G)$ of a graph $G$ equals the minimum‎ ‎cardinality of a convex dominating set in $G$‎. ‎{\em The convex‎ ‎domination subdivision number} sd$_{\gamma_{\rm con}}(G)$ is the‎ ‎minimum number of edges that must be subdivided (each edge in $G$‎ ‎can be subdivided at most once) in order to increase the convex‎ ‎domination number‎. ‎In this paper we initiate the study of convex‎ ‎domination subdivision number and we establish upper bounds for‎ ‎it‎.
topic convex dominating set‎
‎convex domination number‎
url http://comb-opt.azaruniv.ac.ir/article_13544.html
work_keys_str_mv AT mdettlaff theconvexdominationsubdivisionnumberofagraph
AT skosari theconvexdominationsubdivisionnumberofagraph
AT mlemanska theconvexdominationsubdivisionnumberofagraph
AT smsheikholeslami theconvexdominationsubdivisionnumberofagraph
AT mdettlaff convexdominationsubdivisionnumberofagraph
AT skosari convexdominationsubdivisionnumberofagraph
AT mlemanska convexdominationsubdivisionnumberofagraph
AT smsheikholeslami convexdominationsubdivisionnumberofagraph
_version_ 1724958604789809152