Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification

Bidikmisi scholarship grantees are determined based on criteria related to the socioeconomic conditions of the parent of the scholarship grantee. Decision process of Bidikmisi acceptance is not easy to do, since there are sufficient big data of prospective applicants and variables of varied criteria...

Full description

Bibliographic Details
Main Authors: NUR Iriawan, Kartika Fithriasari, Brodjol Sutija Suprih Ulama, Wahyuni Suryaningtyas, Irwan Susanto, Anindya Apriliyanti Pravitasari
Format: Article
Language:English
Published: Universitas Indonesia 2018-06-01
Series:Jurnal Ilmu Komputer dan Informasi
Subjects:
Online Access:http://jiki.cs.ui.ac.id/index.php/jiki/article/view/536
id doaj-84b69abe806149a9ae8aaf1488b1f072
record_format Article
spelling doaj-84b69abe806149a9ae8aaf1488b1f0722020-11-24T21:53:41ZengUniversitas IndonesiaJurnal Ilmu Komputer dan Informasi2088-70512502-92742018-06-01112677610.21609/jiki.v11i2.536244Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship ClassificationNUR Iriawan0Kartika Fithriasari1Brodjol Sutija Suprih Ulama2Wahyuni Suryaningtyas3Irwan Susanto4Anindya Apriliyanti Pravitasari5Stiatistika - Institut Teknologi Sepuluh Nopember (ITS)Statistika-Institut Teknologi Sepuluh Nopember (ITS)Statistika Bisnis - Institut Teknologi Sepuluh Nopember (ITS)Universitas Muhammaidiyah SurabayaMatematika - Universitas Sebelas MaretStatistika - Universitas PadjadjaranBidikmisi scholarship grantees are determined based on criteria related to the socioeconomic conditions of the parent of the scholarship grantee. Decision process of Bidikmisi acceptance is not easy to do, since there are sufficient big data of prospective applicants and variables of varied criteria. Based on these problems, a new approach is proposed to determine Bidikmisi grantees by using the Bayesian Bernoulli mixture regression model. The modeling procedure is performed by compiling the accepted and unaccepted cluster of applicants which are estimated for each cluster by the Bernoulli mixture regression model. The model parameter estimation process is done by building an algorithm based on Bayesian Markov Chain Monte Carlo (MCMC) method. The accuracy of acceptance process through Bayesian Bernoulli mixture regression model is measured by determining acceptance classification percentage of model which is compared with acceptance classification percentage of  the dummy regression model and the polytomous regression model. The comparative results show that Bayesian Bernoulli mixture regression model approach gives higher percentage of acceptance classification accuracy than dummy regression model and polytomous regression modelhttp://jiki.cs.ui.ac.id/index.php/jiki/article/view/536Bernoulli mixture regression modelBayesian MCMCGibbs SamplingBidikmisi
collection DOAJ
language English
format Article
sources DOAJ
author NUR Iriawan
Kartika Fithriasari
Brodjol Sutija Suprih Ulama
Wahyuni Suryaningtyas
Irwan Susanto
Anindya Apriliyanti Pravitasari
spellingShingle NUR Iriawan
Kartika Fithriasari
Brodjol Sutija Suprih Ulama
Wahyuni Suryaningtyas
Irwan Susanto
Anindya Apriliyanti Pravitasari
Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
Jurnal Ilmu Komputer dan Informasi
Bernoulli mixture regression model
Bayesian MCMC
Gibbs Sampling
Bidikmisi
author_facet NUR Iriawan
Kartika Fithriasari
Brodjol Sutija Suprih Ulama
Wahyuni Suryaningtyas
Irwan Susanto
Anindya Apriliyanti Pravitasari
author_sort NUR Iriawan
title Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
title_short Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
title_full Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
title_fullStr Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
title_full_unstemmed Bayesian Bernoulli Mixture Regression Model for Bidikmisi Scholarship Classification
title_sort bayesian bernoulli mixture regression model for bidikmisi scholarship classification
publisher Universitas Indonesia
series Jurnal Ilmu Komputer dan Informasi
issn 2088-7051
2502-9274
publishDate 2018-06-01
description Bidikmisi scholarship grantees are determined based on criteria related to the socioeconomic conditions of the parent of the scholarship grantee. Decision process of Bidikmisi acceptance is not easy to do, since there are sufficient big data of prospective applicants and variables of varied criteria. Based on these problems, a new approach is proposed to determine Bidikmisi grantees by using the Bayesian Bernoulli mixture regression model. The modeling procedure is performed by compiling the accepted and unaccepted cluster of applicants which are estimated for each cluster by the Bernoulli mixture regression model. The model parameter estimation process is done by building an algorithm based on Bayesian Markov Chain Monte Carlo (MCMC) method. The accuracy of acceptance process through Bayesian Bernoulli mixture regression model is measured by determining acceptance classification percentage of model which is compared with acceptance classification percentage of  the dummy regression model and the polytomous regression model. The comparative results show that Bayesian Bernoulli mixture regression model approach gives higher percentage of acceptance classification accuracy than dummy regression model and polytomous regression model
topic Bernoulli mixture regression model
Bayesian MCMC
Gibbs Sampling
Bidikmisi
url http://jiki.cs.ui.ac.id/index.php/jiki/article/view/536
work_keys_str_mv AT nuririawan bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
AT kartikafithriasari bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
AT brodjolsutijasuprihulama bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
AT wahyunisuryaningtyas bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
AT irwansusanto bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
AT anindyaapriliyantipravitasari bayesianbernoullimixtureregressionmodelforbidikmisischolarshipclassification
_version_ 1725870638573289472