Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method
This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/7348572 |
Summary: | This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results. |
---|---|
ISSN: | 1076-2787 1099-0526 |