Modification of Ceramic Membranes with Carbon Compounds for Pharmaceutical Substances Removal from Water in a Filtration—Adsorption System

The aim of this work is to develop a new type of carbon-ceramic membranes for the removal of pharmaceutical substances from water. The membranes were prepared by the chemical modification method using an organosilicon precursor—octadecyltrichlorosilane (ODTS). Graphene oxide, multi-walled carbon nan...

Full description

Bibliographic Details
Main Authors: Daniel Polak, Izabela Zielińska, Maciej Szwast, Igor Kogut, Artur Małolepszy
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/11/7/481
Description
Summary:The aim of this work is to develop a new type of carbon-ceramic membranes for the removal of pharmaceutical substances from water. The membranes were prepared by the chemical modification method using an organosilicon precursor—octadecyltrichlorosilane (ODTS). Graphene oxide, multi-walled carbon nanotubes with carboxylic groups, and single-walled carbon nanotubes were used in the modification process. The filtration properties and adsorption properties of the developed membranes were tested. In order to characterize the membrane, the water permeability, the change of the permeate flux in time, and the adsorbed mass of the substance were determined. Additionally, the surface properties of the membranes were characterized by contact angle measurements and porosimetry. The antibiotic tetracycline was used in the adsorption tests. Based on the results, the improved adsorption properties of the modified membrane in relation to the unmodified membrane were noticed. Novel ceramic membranes modified with MWCNT are characterized by 45.4% removal of tetracycline and permeate flux of 520 L·h·m<sup>−2</sup>·bar<sup>−1</sup>. We demonstrated the ability of modified membranes to adsorb pharmaceuticals from water streams that are in contact with the membrane. Novel membranes retain their filtration properties. Therefore, such membranes can be used in an integrated filtration–adsorption process.
ISSN:2077-0375