Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications
Lung cancer is a life-threatening disease with the highest morbidity and mortality rates of any cancer worldwide. Clinical staging of lung cancer can significantly reduce the mortality rate, because effective treatment options strongly depend on the specific stage of cancer. Unfortunately, manual st...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/11/2329 |
id |
doaj-84a83d4e06c54f12b3d240a030d624b2 |
---|---|
record_format |
Article |
spelling |
doaj-84a83d4e06c54f12b3d240a030d624b22020-11-25T00:25:27ZengMDPI AGApplied Sciences2076-34172019-06-01911232910.3390/app9112329app9112329Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged ClassificationsMay Phu Paing0Kazuhiko Hamamoto1Supan Tungjitkusolmun2Chuchart Pintavirooj3Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandSchool of Information and Telecommunication Engineering, Tokai University, Tokyo 108-8619, JapanFaculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandFaculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandLung cancer is a life-threatening disease with the highest morbidity and mortality rates of any cancer worldwide. Clinical staging of lung cancer can significantly reduce the mortality rate, because effective treatment options strongly depend on the specific stage of cancer. Unfortunately, manual staging remains a challenge due to the intensive effort required. This paper presents a computer-aided diagnosis (CAD) method for detecting and staging lung cancer from computed tomography (CT) images. This CAD works in three fundamental phases: segmentation, detection, and staging. In the first phase, lung anatomical structures from the input tomography scans are segmented using gray-level thresholding. In the second, the tumor nodules inside the lungs are detected using some extracted features from the segmented tumor candidates. In the last phase, the clinical stages of the detected tumors are defined by extracting locational features. For accurate and robust predictions, our CAD applies a double-staged classification: the first is for the detection of tumors and the second is for staging. In both classification stages, five alternative classifiers, namely the Decision Tree (DT), K-nearest neighbor (KNN), Support Vector Machine (SVM), Ensemble Tree (ET), and Back Propagation Neural Network (BPNN), are applied and compared to ensure high classification performance. The average accuracy levels of 92.8% for detection and 90.6% for staging are achieved using BPNN. Experimental findings reveal that the proposed CAD method provides preferable results compared to previous methods; thus, it is applicable as a clinical diagnostic tool for lung cancer.https://www.mdpi.com/2076-3417/9/11/2329automatic diagnosisbackpropagation neural networkcomputed tomographylung cancerstaging |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
May Phu Paing Kazuhiko Hamamoto Supan Tungjitkusolmun Chuchart Pintavirooj |
spellingShingle |
May Phu Paing Kazuhiko Hamamoto Supan Tungjitkusolmun Chuchart Pintavirooj Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications Applied Sciences automatic diagnosis backpropagation neural network computed tomography lung cancer staging |
author_facet |
May Phu Paing Kazuhiko Hamamoto Supan Tungjitkusolmun Chuchart Pintavirooj |
author_sort |
May Phu Paing |
title |
Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications |
title_short |
Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications |
title_full |
Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications |
title_fullStr |
Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications |
title_full_unstemmed |
Automatic Detection and Staging of Lung Tumors using Locational Features and Double-Staged Classifications |
title_sort |
automatic detection and staging of lung tumors using locational features and double-staged classifications |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2019-06-01 |
description |
Lung cancer is a life-threatening disease with the highest morbidity and mortality rates of any cancer worldwide. Clinical staging of lung cancer can significantly reduce the mortality rate, because effective treatment options strongly depend on the specific stage of cancer. Unfortunately, manual staging remains a challenge due to the intensive effort required. This paper presents a computer-aided diagnosis (CAD) method for detecting and staging lung cancer from computed tomography (CT) images. This CAD works in three fundamental phases: segmentation, detection, and staging. In the first phase, lung anatomical structures from the input tomography scans are segmented using gray-level thresholding. In the second, the tumor nodules inside the lungs are detected using some extracted features from the segmented tumor candidates. In the last phase, the clinical stages of the detected tumors are defined by extracting locational features. For accurate and robust predictions, our CAD applies a double-staged classification: the first is for the detection of tumors and the second is for staging. In both classification stages, five alternative classifiers, namely the Decision Tree (DT), K-nearest neighbor (KNN), Support Vector Machine (SVM), Ensemble Tree (ET), and Back Propagation Neural Network (BPNN), are applied and compared to ensure high classification performance. The average accuracy levels of 92.8% for detection and 90.6% for staging are achieved using BPNN. Experimental findings reveal that the proposed CAD method provides preferable results compared to previous methods; thus, it is applicable as a clinical diagnostic tool for lung cancer. |
topic |
automatic diagnosis backpropagation neural network computed tomography lung cancer staging |
url |
https://www.mdpi.com/2076-3417/9/11/2329 |
work_keys_str_mv |
AT mayphupaing automaticdetectionandstagingoflungtumorsusinglocationalfeaturesanddoublestagedclassifications AT kazuhikohamamoto automaticdetectionandstagingoflungtumorsusinglocationalfeaturesanddoublestagedclassifications AT supantungjitkusolmun automaticdetectionandstagingoflungtumorsusinglocationalfeaturesanddoublestagedclassifications AT chuchartpintavirooj automaticdetectionandstagingoflungtumorsusinglocationalfeaturesanddoublestagedclassifications |
_version_ |
1725348924050374656 |