A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods

Abstract Background Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log K ow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are o...

Full description

Bibliographic Details
Main Authors: Geoff Hodges, Charles Eadsforth, Bart Bossuyt, Alain Bouvy, Marie-Helene Enrici, Marc Geurts, Matthias Kotthoff, Eleanor Michie, Dennis Miller, Josef Müller, Gunter Oetter, Jayne Roberts, Diederik Schowanek, Ping Sun, Joachim Venzmer
Format: Article
Language:English
Published: SpringerOpen 2019-01-01
Series:Environmental Sciences Europe
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12302-018-0176-7
id doaj-848f61233c4e41adb30729be571132d0
record_format Article
spelling doaj-848f61233c4e41adb30729be571132d02020-11-24T21:29:18ZengSpringerOpenEnvironmental Sciences Europe2190-47072190-47152019-01-0131111810.1186/s12302-018-0176-7A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methodsGeoff Hodges0Charles Eadsforth1Bart Bossuyt2Alain Bouvy3Marie-Helene Enrici4Marc Geurts5Matthias Kotthoff6Eleanor Michie7Dennis Miller8Josef Müller9Gunter Oetter10Jayne Roberts11Diederik Schowanek12Ping Sun13Joachim Venzmer14Safety and Environmental Assurance Centre, UnileverCVE Consultancy LimitedHuntsman EuropeCEFICSolvayAkzo Nobel NVFraunhofer Institute for Molecular Biology and Applied Ecology IMESalford City CouncilClariant Produkte (Deutschland) GmbHFraunhofer Institute for Molecular Biology and Applied Ecology IMEBASF SESafety and Environmental Assurance Centre, UnileverProcter & GambleProcter & GambleEvonik Nutrition and Care GmbHAbstract Background Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log K ow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound. Determining log K ow data for surfactants is a technical challenge due to their amphiphilic properties. Currently several existing experimental OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log K ow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behaviour of surfactants. Results The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log K ow values than the slow-stirring method for non-ionics, but this positive bias could be removed using reference surfactants with log K ow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable experimental method for generating log K ow/D data for all the surface-active test compounds. Generally, QSPR-predicted log K ow/D values do not correlate well with experimental values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log K ow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. Conclusions The slow-stirring method is the most widely applicable experimental method for generating log K ow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using experimental and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log K ow/D values for the surfactant classes. Investigation of newer alternative experimental log K ow methods as well as more biologically relevant and methodologically defensible alternative methods for describing partitioning of surfactants are recommended.http://link.springer.com/article/10.1186/s12302-018-0176-7SurfactantsLog K ow/DExperimental methodsPredictive (QSPR) models
collection DOAJ
language English
format Article
sources DOAJ
author Geoff Hodges
Charles Eadsforth
Bart Bossuyt
Alain Bouvy
Marie-Helene Enrici
Marc Geurts
Matthias Kotthoff
Eleanor Michie
Dennis Miller
Josef Müller
Gunter Oetter
Jayne Roberts
Diederik Schowanek
Ping Sun
Joachim Venzmer
spellingShingle Geoff Hodges
Charles Eadsforth
Bart Bossuyt
Alain Bouvy
Marie-Helene Enrici
Marc Geurts
Matthias Kotthoff
Eleanor Michie
Dennis Miller
Josef Müller
Gunter Oetter
Jayne Roberts
Diederik Schowanek
Ping Sun
Joachim Venzmer
A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
Environmental Sciences Europe
Surfactants
Log K ow/D
Experimental methods
Predictive (QSPR) models
author_facet Geoff Hodges
Charles Eadsforth
Bart Bossuyt
Alain Bouvy
Marie-Helene Enrici
Marc Geurts
Matthias Kotthoff
Eleanor Michie
Dennis Miller
Josef Müller
Gunter Oetter
Jayne Roberts
Diederik Schowanek
Ping Sun
Joachim Venzmer
author_sort Geoff Hodges
title A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
title_short A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
title_full A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
title_fullStr A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
title_full_unstemmed A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
title_sort comparison of log k ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods
publisher SpringerOpen
series Environmental Sciences Europe
issn 2190-4707
2190-4715
publishDate 2019-01-01
description Abstract Background Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log K ow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chemicals as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound. Determining log K ow data for surfactants is a technical challenge due to their amphiphilic properties. Currently several existing experimental OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log K ow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behaviour of surfactants. Results The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log K ow values than the slow-stirring method for non-ionics, but this positive bias could be removed using reference surfactants with log K ow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable experimental method for generating log K ow/D data for all the surface-active test compounds. Generally, QSPR-predicted log K ow/D values do not correlate well with experimental values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log K ow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. Conclusions The slow-stirring method is the most widely applicable experimental method for generating log K ow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using experimental and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log K ow/D values for the surfactant classes. Investigation of newer alternative experimental log K ow methods as well as more biologically relevant and methodologically defensible alternative methods for describing partitioning of surfactants are recommended.
topic Surfactants
Log K ow/D
Experimental methods
Predictive (QSPR) models
url http://link.springer.com/article/10.1186/s12302-018-0176-7
work_keys_str_mv AT geoffhodges acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT charleseadsforth acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT bartbossuyt acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT alainbouvy acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT marieheleneenrici acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT marcgeurts acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT matthiaskotthoff acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT eleanormichie acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT dennismiller acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT josefmuller acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT gunteroetter acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT jayneroberts acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT diederikschowanek acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT pingsun acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT joachimvenzmer acomparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT geoffhodges comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT charleseadsforth comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT bartbossuyt comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT alainbouvy comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT marieheleneenrici comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT marcgeurts comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT matthiaskotthoff comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT eleanormichie comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT dennismiller comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT josefmuller comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT gunteroetter comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT jayneroberts comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT diederikschowanek comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT pingsun comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
AT joachimvenzmer comparisonoflogkownoctanolwaterpartitioncoefficientvaluesfornonionicanioniccationicandamphotericsurfactantsdeterminedusingpredictionsandexperimentalmethods
_version_ 1725966271811420160