Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)

<p>Abstract</p> <p>Background</p> <p>Pre-harvest infection of peanuts by <it>Aspergillus flavus </it>and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especiall...

Full description

Bibliographic Details
Main Authors: Li Ling, Chen Xiaoping, Zhang Erhua, Wang Tong, Liang Xuanqiang
Format: Article
Language:English
Published: BMC 2010-11-01
Series:BMC Plant Biology
Online Access:http://www.biomedcentral.com/1471-2229/10/267
id doaj-846303316fa24876b8b9bdb780a4c124
record_format Article
spelling doaj-846303316fa24876b8b9bdb780a4c1242020-11-24T22:16:23ZengBMCBMC Plant Biology1471-22292010-11-0110126710.1186/1471-2229-10-267Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)Li LingChen XiaopingZhang ErhuaWang TongLiang Xuanqiang<p>Abstract</p> <p>Background</p> <p>Pre-harvest infection of peanuts by <it>Aspergillus flavus </it>and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism.</p> <p>Results</p> <p>The objective of this study was to identify resistance-associated proteins in response to <it>A. flavus </it>infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1) and a susceptible cultivar (Yueyou 7) under well-watered condition, drought stress, and <it>A. flavus </it>infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to <it>A. flavus </it>attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant cultivar challenged by <it>A. flavus </it>under drought stress. A significant decrease or down regulation of trypsin inhibitor caused by <it>A. flavus </it>in the resistant cultivar was also observed. In addition, variations in protein expression patterns for resistant and susceptible cultivars were further validated by real time RT-PCR analysis.</p> <p>Conclusion</p> <p>In summary, this study provides new insights into understanding of the molecular mechanism of resistance to pre-harvest aflatoxin contamination in peanut, and will help to develop peanut varieties with resistance to pre-harvested aflatoxin contamination.</p> http://www.biomedcentral.com/1471-2229/10/267
collection DOAJ
language English
format Article
sources DOAJ
author Li Ling
Chen Xiaoping
Zhang Erhua
Wang Tong
Liang Xuanqiang
spellingShingle Li Ling
Chen Xiaoping
Zhang Erhua
Wang Tong
Liang Xuanqiang
Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
BMC Plant Biology
author_facet Li Ling
Chen Xiaoping
Zhang Erhua
Wang Tong
Liang Xuanqiang
author_sort Li Ling
title Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
title_short Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
title_full Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
title_fullStr Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
title_full_unstemmed Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>Arachis hypogaea L</it>)
title_sort identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (<it>arachis hypogaea l</it>)
publisher BMC
series BMC Plant Biology
issn 1471-2229
publishDate 2010-11-01
description <p>Abstract</p> <p>Background</p> <p>Pre-harvest infection of peanuts by <it>Aspergillus flavus </it>and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism.</p> <p>Results</p> <p>The objective of this study was to identify resistance-associated proteins in response to <it>A. flavus </it>infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1) and a susceptible cultivar (Yueyou 7) under well-watered condition, drought stress, and <it>A. flavus </it>infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to <it>A. flavus </it>attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant cultivar challenged by <it>A. flavus </it>under drought stress. A significant decrease or down regulation of trypsin inhibitor caused by <it>A. flavus </it>in the resistant cultivar was also observed. In addition, variations in protein expression patterns for resistant and susceptible cultivars were further validated by real time RT-PCR analysis.</p> <p>Conclusion</p> <p>In summary, this study provides new insights into understanding of the molecular mechanism of resistance to pre-harvest aflatoxin contamination in peanut, and will help to develop peanut varieties with resistance to pre-harvested aflatoxin contamination.</p>
url http://www.biomedcentral.com/1471-2229/10/267
work_keys_str_mv AT liling identificationofseedproteinsassociatedwithresistancetopreharvestedaflatoxincontaminationinpeanutitarachishypogaealit
AT chenxiaoping identificationofseedproteinsassociatedwithresistancetopreharvestedaflatoxincontaminationinpeanutitarachishypogaealit
AT zhangerhua identificationofseedproteinsassociatedwithresistancetopreharvestedaflatoxincontaminationinpeanutitarachishypogaealit
AT wangtong identificationofseedproteinsassociatedwithresistancetopreharvestedaflatoxincontaminationinpeanutitarachishypogaealit
AT liangxuanqiang identificationofseedproteinsassociatedwithresistancetopreharvestedaflatoxincontaminationinpeanutitarachishypogaealit
_version_ 1725790172376727552