Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
We consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/13/7/164 |
id |
doaj-845c6da7eda44aa78e2dcbe4a02cd8c7 |
---|---|
record_format |
Article |
spelling |
doaj-845c6da7eda44aa78e2dcbe4a02cd8c72020-11-25T03:28:55ZengMDPI AGAlgorithms1999-48932020-07-011316416410.3390/a13070164Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational AspectsWojciech Rafajłowicz0Department of Computer Engineering, Wroclaw University of Science and Technology, Wyb Wyspianskiego 27, 50 370 Wroclaw, PolandWe consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mspace width="0.166667em"></mspace> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>r</i> is a non-random real variable and ranges from <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. We put emphasis on the algorithmic aspects of this problem, since they are crucial for exploratory analysis of big data that are needed for the estimation. A specialized learning algorithm, based on the 2D FFT, is proposed and tested on observations that allow for estimate p.d.f.’s of a jet engine temperatures as a function of its rotation speed. We also derive theoretical results concerning the convergence of the estimation procedure that contains hints on selecting parameters of the estimation algorithm.https://www.mdpi.com/1999-4893/13/7/164nonparametric estimationFFTfamily of probability density functions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wojciech Rafajłowicz |
spellingShingle |
Wojciech Rafajłowicz Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects Algorithms nonparametric estimation FFT family of probability density functions |
author_facet |
Wojciech Rafajłowicz |
author_sort |
Wojciech Rafajłowicz |
title |
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects |
title_short |
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects |
title_full |
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects |
title_fullStr |
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects |
title_full_unstemmed |
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects |
title_sort |
nonparametric estimation of continuously parametrized families of probability density functions—computational aspects |
publisher |
MDPI AG |
series |
Algorithms |
issn |
1999-4893 |
publishDate |
2020-07-01 |
description |
We consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mspace width="0.166667em"></mspace> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>r</i> is a non-random real variable and ranges from <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. We put emphasis on the algorithmic aspects of this problem, since they are crucial for exploratory analysis of big data that are needed for the estimation. A specialized learning algorithm, based on the 2D FFT, is proposed and tested on observations that allow for estimate p.d.f.’s of a jet engine temperatures as a function of its rotation speed. We also derive theoretical results concerning the convergence of the estimation procedure that contains hints on selecting parameters of the estimation algorithm. |
topic |
nonparametric estimation FFT family of probability density functions |
url |
https://www.mdpi.com/1999-4893/13/7/164 |
work_keys_str_mv |
AT wojciechrafajłowicz nonparametricestimationofcontinuouslyparametrizedfamiliesofprobabilitydensityfunctionscomputationalaspects |
_version_ |
1724582022757744640 |