Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects

We consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</...

Full description

Bibliographic Details
Main Author: Wojciech Rafajłowicz
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Algorithms
Subjects:
FFT
Online Access:https://www.mdpi.com/1999-4893/13/7/164
id doaj-845c6da7eda44aa78e2dcbe4a02cd8c7
record_format Article
spelling doaj-845c6da7eda44aa78e2dcbe4a02cd8c72020-11-25T03:28:55ZengMDPI AGAlgorithms1999-48932020-07-011316416410.3390/a13070164Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational AspectsWojciech Rafajłowicz0Department of Computer Engineering, Wroclaw University of Science and Technology, Wyb Wyspianskiego 27, 50 370 Wroclaw, PolandWe consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mspace width="0.166667em"></mspace> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>r</i> is a non-random real variable and ranges from <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. We put emphasis on the algorithmic aspects of this problem, since they are crucial for exploratory analysis of big data that are needed for the estimation. A specialized learning algorithm, based on the 2D FFT, is proposed and tested on observations that allow for estimate p.d.f.’s of a jet engine temperatures as a function of its rotation speed. We also derive theoretical results concerning the convergence of the estimation procedure that contains hints on selecting parameters of the estimation algorithm.https://www.mdpi.com/1999-4893/13/7/164nonparametric estimationFFTfamily of probability density functions
collection DOAJ
language English
format Article
sources DOAJ
author Wojciech Rafajłowicz
spellingShingle Wojciech Rafajłowicz
Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
Algorithms
nonparametric estimation
FFT
family of probability density functions
author_facet Wojciech Rafajłowicz
author_sort Wojciech Rafajłowicz
title Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
title_short Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
title_full Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
title_fullStr Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
title_full_unstemmed Nonparametric Estimation of Continuously Parametrized Families of Probability Density Functions—Computational Aspects
title_sort nonparametric estimation of continuously parametrized families of probability density functions—computational aspects
publisher MDPI AG
series Algorithms
issn 1999-4893
publishDate 2020-07-01
description We consider a rather general problem of nonparametric estimation of an uncountable set of probability density functions (p.d.f.’s) of the form: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mspace width="0.166667em"></mspace> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>r</i> is a non-random real variable and ranges from <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. We put emphasis on the algorithmic aspects of this problem, since they are crucial for exploratory analysis of big data that are needed for the estimation. A specialized learning algorithm, based on the 2D FFT, is proposed and tested on observations that allow for estimate p.d.f.’s of a jet engine temperatures as a function of its rotation speed. We also derive theoretical results concerning the convergence of the estimation procedure that contains hints on selecting parameters of the estimation algorithm.
topic nonparametric estimation
FFT
family of probability density functions
url https://www.mdpi.com/1999-4893/13/7/164
work_keys_str_mv AT wojciechrafajłowicz nonparametricestimationofcontinuouslyparametrizedfamiliesofprobabilitydensityfunctionscomputationalaspects
_version_ 1724582022757744640