Computational proofs of congruences for 2-colored Frobenius partitions
In 1994, the following infinite family of congruences was conjectured for the partition function cΦ2(n) which counts the number of 2-colored Frobenius partitions of n: for all n≥0 and α≥1, cΦ2(5αn+λα)≡0(mod5α), where λα is the least positive reciprocal of 12 modulo 5α. In this paper, the first four...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2002-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171202007342 |
Summary: | In 1994, the following infinite family of congruences was
conjectured for the partition function cΦ2(n) which counts the number of 2-colored Frobenius partitions of n: for all n≥0 and α≥1, cΦ2(5αn+λα)≡0(mod5α), where λα is the least positive reciprocal of 12 modulo 5α.
In this paper, the first four cases of this family are proved. |
---|---|
ISSN: | 0161-1712 1687-0425 |