Adaptive Variable Parameter Impedance Control for Apple Harvesting Robot Compliant Picking

In order to reduce the damage of apple harvesting robot to fruits and achieve compliant picking, an adaptive variable parameter impedance control method for apple harvesting robot compliant picking is proposed in this paper. Firstly, the Burgers viscoelastic model is used to characterize the rheolog...

Full description

Bibliographic Details
Main Authors: Ji Wei, Ding Yi, Xu Bo, Chen Guangyu, Zhao Dean
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/4812657
Description
Summary:In order to reduce the damage of apple harvesting robot to fruits and achieve compliant picking, an adaptive variable parameter impedance control method for apple harvesting robot compliant picking is proposed in this paper. Firstly, the Burgers viscoelastic model is used to characterize the rheological properties of apples and study the variation of mechanical properties of apple grasping at different speeds. Then, a force-based impedance control system is designed. On this basis, aiming at the influence of impedance controller parameters on contact force, three impedance parameters self-tuning functions are constructed to complete the design of an improved force-based impedance control system based on the hyperbolic secant function. The simulation and experimental results show that the proposed control makes the desired force smoother, and its overshoot is about 2.3%. The response speed is faster, and the adjustment time of contact force is shorter of about 0.48 s. The contact force overshoot is about 2%, which is 37.5% less than that of the traditional force-based impedance control. This research improves the control performance for apple harvesting robot compliant picking.
ISSN:1076-2787
1099-0526