Nanoenhanced Materials for Reclamation of Mine Lands and Other Degraded Soils: A Review
Successful mine soil reclamation facilitates ecosystem recovery, minimizes adverse environmental impacts, creates additional lands for agricultural or forestry uses, and enhances the carbon (C) sequestration. Nanoparticles with extremely high reactivity and deliverability can be applied as amendment...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Journal of Nanotechnology |
Online Access: | http://dx.doi.org/10.1155/2012/461468 |
Summary: | Successful mine soil reclamation facilitates ecosystem recovery, minimizes adverse environmental impacts, creates additional lands for agricultural or forestry uses, and enhances the carbon (C) sequestration. Nanoparticles with extremely high reactivity and deliverability can be applied as amendments to improve soil quality, mitigate soil contaminations, ensure safe land–application of the conventional amendment materials (e.g., manures and biosolids), and enhance soil erosion control. However, there is no report on using nanoenhanced materials for mine soil reclamation. Through reviewing the up-to-date research results on using environment-friendly nanoparticles for agricultural soil quality improvement and for contaminated soil remediation, this paper synthesizes that these nanomaterials with high potentials for mine soil reclamation include zeolites, zero-valent iron nanoparticles, iron oxide nanoparticles, phosphate-based nanoparticles, iron sulfide nanoparticles and C nanotubes. Transport of these particles in the environment and their possible ecotoxicological effects are also discussed. Additionally, this article proposes a practical and economical approach to applying nanotechnology for mine soil reclamation: adding small amounts of nanoparticles to the conventional soil amendment materials and then applying the mixtures for soil quality improvements. Hence the cost of using nanoparticles is reduced and the benefits of both nanoparticles and the conventional amendment materials are harnessed. |
---|---|
ISSN: | 1687-9503 1687-9511 |