Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional

Rice is the main commodity in Indonesia, both for consumption and production. Rice production data are available at the Badan Pusat Statistika and at Kementrian Pertanian. The data is used to build a large data management model for Indonesia's rice trade. The model development strategy is done...

Full description

Bibliographic Details
Main Authors: Eneng Tita Tosida, Fajar Delli Wihartiko, Irman Hermadi, Yani Nurhadryani, Feriadi
Format: Article
Language:Indonesian
Published: Ikatan Ahli Indormatika Indonesia 2020-02-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/1520
id doaj-84141ef384914193911b08f75b3c50b4
record_format Article
spelling doaj-84141ef384914193911b08f75b3c50b42020-11-25T01:40:12ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602020-02-014114215410.29207/resti.v4i1.15201520Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan NasionalEneng Tita Tosida0Fajar Delli Wihartiko1Irman Hermadi2Yani Nurhadryani3FeriadiIPB UniversityIPB universityIPB universityInstitut Pertanian BogorRice is the main commodity in Indonesia, both for consumption and production. Rice production data are available at the Badan Pusat Statistika and at Kementrian Pertanian. The data is used to build a large data management model for Indonesia's rice trade. The model development strategy is done through analyzing agriculture big data analytic that is equipped with descriptive analysis, evaluation, predictive and prescriptive. The models and designs that are built discuss business processes, stakeholder networks and network management. Descriptive analysis results in the form of grouping and visualization of rice data. The results of the diagnostic process using classification approach produce a decision tree to see the results of the level of production in a province. In the predictive process produces a linear regression model to predict the results of the following year's production as well as in the analysis.http://jurnal.iaii.or.id/index.php/RESTI/article/view/1520big data analytics, clustering, classification, national rice commodities, food security
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Eneng Tita Tosida
Fajar Delli Wihartiko
Irman Hermadi
Yani Nurhadryani
Feriadi
spellingShingle Eneng Tita Tosida
Fajar Delli Wihartiko
Irman Hermadi
Yani Nurhadryani
Feriadi
Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
big data analytics, clustering, classification, national rice commodities, food security
author_facet Eneng Tita Tosida
Fajar Delli Wihartiko
Irman Hermadi
Yani Nurhadryani
Feriadi
author_sort Eneng Tita Tosida
title Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
title_short Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
title_full Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
title_fullStr Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
title_full_unstemmed Model Manajemen Big Data Komoditas Beras untuk Kebijakan Pangan Nasional
title_sort model manajemen big data komoditas beras untuk kebijakan pangan nasional
publisher Ikatan Ahli Indormatika Indonesia
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
issn 2580-0760
publishDate 2020-02-01
description Rice is the main commodity in Indonesia, both for consumption and production. Rice production data are available at the Badan Pusat Statistika and at Kementrian Pertanian. The data is used to build a large data management model for Indonesia's rice trade. The model development strategy is done through analyzing agriculture big data analytic that is equipped with descriptive analysis, evaluation, predictive and prescriptive. The models and designs that are built discuss business processes, stakeholder networks and network management. Descriptive analysis results in the form of grouping and visualization of rice data. The results of the diagnostic process using classification approach produce a decision tree to see the results of the level of production in a province. In the predictive process produces a linear regression model to predict the results of the following year's production as well as in the analysis.
topic big data analytics, clustering, classification, national rice commodities, food security
url http://jurnal.iaii.or.id/index.php/RESTI/article/view/1520
work_keys_str_mv AT enengtitatosida modelmanajemenbigdatakomoditasberasuntukkebijakanpangannasional
AT fajardelliwihartiko modelmanajemenbigdatakomoditasberasuntukkebijakanpangannasional
AT irmanhermadi modelmanajemenbigdatakomoditasberasuntukkebijakanpangannasional
AT yaninurhadryani modelmanajemenbigdatakomoditasberasuntukkebijakanpangannasional
AT feriadi modelmanajemenbigdatakomoditasberasuntukkebijakanpangannasional
_version_ 1725046501108875264