Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations
Modern imaging applications have increased the demand for High-Definition Range (HDR) imaging. Nonetheless, HDR imaging is not easily available with low-cost imaging sensors, since their dynamic range is rather limited. A viable solution to HDR imaging via low-cost imaging sensors is the synthesis o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Journal of Imaging |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-433X/5/3/32 |
id |
doaj-83f9a4b1475c46b8813a233e332f8396 |
---|---|
record_format |
Article |
spelling |
doaj-83f9a4b1475c46b8813a233e332f83962020-11-25T01:28:22ZengMDPI AGJournal of Imaging2313-433X2019-02-01533210.3390/jimaging5030032jimaging5030032Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis TransformationsIoannis Merianos0Nikolaos Mitianoudis1Electrical and Computer Engineering Department, Democritus University of Thrace, 67100 Xanthi, GreeceElectrical and Computer Engineering Department, Democritus University of Thrace, 67100 Xanthi, GreeceModern imaging applications have increased the demand for High-Definition Range (HDR) imaging. Nonetheless, HDR imaging is not easily available with low-cost imaging sensors, since their dynamic range is rather limited. A viable solution to HDR imaging via low-cost imaging sensors is the synthesis of multiple-exposure images. A low-cost sensor can capture the observed scene at multiple-exposure settings and an image-fusion algorithm can combine all these images to form an increased dynamic range image. In this work, two image-fusion methods are combined to tackle multiple-exposure fusion. The luminance channel is fused using the Mitianoudis and Stathaki (2008) method, while the color channels are combined using the method proposed by Mertens et al. (2007). The proposed fusion algorithm performs well without halo artifacts that exist in other state-of-the-art methods. This paper is an extension version of a conference, with more analysis on the derived method and more experimental results that confirm the validity of the method.https://www.mdpi.com/2313-433X/5/3/32image fusionexposure fusionindependent component analysis (ICA) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ioannis Merianos Nikolaos Mitianoudis |
spellingShingle |
Ioannis Merianos Nikolaos Mitianoudis Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations Journal of Imaging image fusion exposure fusion independent component analysis (ICA) |
author_facet |
Ioannis Merianos Nikolaos Mitianoudis |
author_sort |
Ioannis Merianos |
title |
Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations |
title_short |
Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations |
title_full |
Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations |
title_fullStr |
Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations |
title_full_unstemmed |
Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations |
title_sort |
multiple-exposure image fusion for hdr image synthesis using learned analysis transformations |
publisher |
MDPI AG |
series |
Journal of Imaging |
issn |
2313-433X |
publishDate |
2019-02-01 |
description |
Modern imaging applications have increased the demand for High-Definition Range (HDR) imaging. Nonetheless, HDR imaging is not easily available with low-cost imaging sensors, since their dynamic range is rather limited. A viable solution to HDR imaging via low-cost imaging sensors is the synthesis of multiple-exposure images. A low-cost sensor can capture the observed scene at multiple-exposure settings and an image-fusion algorithm can combine all these images to form an increased dynamic range image. In this work, two image-fusion methods are combined to tackle multiple-exposure fusion. The luminance channel is fused using the Mitianoudis and Stathaki (2008) method, while the color channels are combined using the method proposed by Mertens et al. (2007). The proposed fusion algorithm performs well without halo artifacts that exist in other state-of-the-art methods. This paper is an extension version of a conference, with more analysis on the derived method and more experimental results that confirm the validity of the method. |
topic |
image fusion exposure fusion independent component analysis (ICA) |
url |
https://www.mdpi.com/2313-433X/5/3/32 |
work_keys_str_mv |
AT ioannismerianos multipleexposureimagefusionforhdrimagesynthesisusinglearnedanalysistransformations AT nikolaosmitianoudis multipleexposureimagefusionforhdrimagesynthesisusinglearnedanalysistransformations |
_version_ |
1725102151302119424 |