Summary: | Despite the great interest in using halophyte Salicornia europaea L. as a crop in extreme saline habitats, little is known about the role played by associated endophytic bacteria in increasing tolerance of the host-plant to nutrient deficiency. Main objectives of this study were to investigate the community composition of diazotrophic endophytes of S. europaea grown under natural conditions, and determine the proportion of plant-growth promoting bacterial strains able to fix N2. To quantify the abundance of diazotrophic bacterial endophytes in stems and roots of S. europaea, nifH gene and 16S rDNA copy numbers were assessed by quantitative real-time PCR, and characterized the taxonomic structure of cultivable bacteria based on selective medium for diazotrophs. The highest copy numbers of nifH and 16S rDNA were observed in the stems of plants growing at the test site characterized by lower salinity, and correlated with high N concentrations in plant tissues. The abundance of bacterial diazotrophs isolated from plant tissues ranged from 3.6 to 6.3 (log10 of cfu per gram dry plant tissue) and varied in a site- and plant-organ manner. Proteobacteria dominated in plants growing in lower salinity while Actinobacteria prevailed in plants originating from higher salinity, what suggest better adaptation of this group of bacteria to extreme salinity. The results provide insights into new species of diazotrophs associated with halophytes that can be used to optimize strategies for selecting biostimulants useful in saline soils. Keywords: Salinity, Endophytes, nifH, Halophytes, Diazotrophs, Soil
|