Immunomodulatory Effect of Continuous Venovenous Hemofiltration during Sepsis: Preliminary Data

Introduction. Severe sepsis and septic shock are the primary causes of multiple organ dysfunction syndrome (MODS), which is the most frequent cause of death in intensive care unit patients. Many pro- and anti-inflammatory mediators, such as interleukin-6 (IL-6), play a strategic role in septic syndr...

Full description

Bibliographic Details
Main Authors: Giuseppe Servillo, Maria Vargas, Antonio Pastore, Alfredo Procino, Michele Iannuzzi, Alfredo Capuano, Andrea Memoli, Eleonora Riccio, Bruno Memoli
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2013/108951
Description
Summary:Introduction. Severe sepsis and septic shock are the primary causes of multiple organ dysfunction syndrome (MODS), which is the most frequent cause of death in intensive care unit patients. Many pro- and anti-inflammatory mediators, such as interleukin-6 (IL-6), play a strategic role in septic syndrome. Continuous renal replacement therapy (CRRT) removes in a nonselective way pro- and anti-inflammatory mediators. Objective. To investigate the effects of continuous venovenous hemofiltration (CVVH) as an immunomodulatory treatment of sepsis in a prospective clinical study. Methods. High flux hemofiltration (Qf = 60 ml/Kg/hr) was performed for 72 hr in thirteen critically ill patients suffering from severe sepsis or septic shock with acute renal failure (ARF). IL-6 gene expression was measured by real-time PCR analysis on RNA extracted from peripheral blood mononuclear cell before beginning of treatment (T0) and after 12, 24, 48, and 72 hours (T1–4). Results. Real-time PCR analysis demonstrated in twelve patients IL-6 mRNA reduction after 12 hours of treatment and a progressive increase after 24, 48, and 72 hours. Conclusions. We suggest that an immunomodulatory effect might exist during CVVH performed in critically ill patients with severe sepsis and septic shock. Our data show that the transcriptional activity of IL-6 increases during CVVH.
ISSN:2314-6133
2314-6141