Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria
Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present study ethyl acetate cell-free culture filtrate of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antiba...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-08-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00876/full |
id |
doaj-83dabe9667a941869f9fe9eea97574cd |
---|---|
record_format |
Article |
spelling |
doaj-83dabe9667a941869f9fe9eea97574cd2020-11-24T23:56:53ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2015-08-01610.3389/fmicb.2015.00876151837Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteriaNISHANTH KUMAR S0CTCRISkin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present study ethyl acetate cell-free culture filtrate of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey’s analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the ten wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 µg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibited biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of the anti-inflammatory cytokines IL-10 and IL-4 by human peripheral blood mononuclear cells but are without significant effect on the production of TNF-α, a pro-inflammatory cytokines. The three CDPs have been examined for their activities against intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 1X and 2X MIC concentrations. Significance decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity towards FS normal fibroblast, VERO and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the report on the production of CDPshttp://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00876/fullArginineDiketopiperazinesAntibacterialwoundAchromobacter sp. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
NISHANTH KUMAR S |
spellingShingle |
NISHANTH KUMAR S Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria Frontiers in Microbiology Arginine Diketopiperazines Antibacterial wound Achromobacter sp. |
author_facet |
NISHANTH KUMAR S |
author_sort |
NISHANTH KUMAR S |
title |
Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
title_short |
Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
title_full |
Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
title_fullStr |
Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
title_full_unstemmed |
Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
title_sort |
purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Microbiology |
issn |
1664-302X |
publishDate |
2015-08-01 |
description |
Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present study ethyl acetate cell-free culture filtrate of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey’s analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the ten wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 µg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibited biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of the anti-inflammatory cytokines IL-10 and IL-4 by human peripheral blood mononuclear cells but are without significant effect on the production of TNF-α, a pro-inflammatory cytokines. The three CDPs have been examined for their activities against intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 1X and 2X MIC concentrations. Significance decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity towards FS normal fibroblast, VERO and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the report on the production of CDPs |
topic |
Arginine Diketopiperazines Antibacterial wound Achromobacter sp. |
url |
http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00876/full |
work_keys_str_mv |
AT nishanthkumars purificationandsynergisticantibacterialactivityofargininederivedcyclicdipeptidesfromachromobacterspassociatedwitharhabditidentomopathogenicnematodeagainstmajorclinicallyrelevantbiofilmformingwoundbacteria |
_version_ |
1725456010639835136 |