On sums of monotone functions over smooth numbers

In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/...

Full description

Bibliographic Details
Main Author: Román Gábor
Format: Article
Language:English
Published: Sciendo 2021-08-01
Series:Acta Universitatis Sapientiae: Mathematica
Subjects:
Online Access:https://doi.org/10.2478/ausm-2021-0016
id doaj-83af9253f62241e2bd21e440920fde45
record_format Article
spelling doaj-83af9253f62241e2bd21e440920fde452021-09-22T06:13:22ZengSciendoActa Universitatis Sapientiae: Mathematica2066-77522021-08-0113127328010.2478/ausm-2021-0016On sums of monotone functions over smooth numbersRomán Gábor0Eötvös Loránd University, HungaryIn this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n)\sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.https://doi.org/10.2478/ausm-2021-0016smooth numbermonotone functiondickman functionabel’s identity40d05
collection DOAJ
language English
format Article
sources DOAJ
author Román Gábor
spellingShingle Román Gábor
On sums of monotone functions over smooth numbers
Acta Universitatis Sapientiae: Mathematica
smooth number
monotone function
dickman function
abel’s identity
40d05
author_facet Román Gábor
author_sort Román Gábor
title On sums of monotone functions over smooth numbers
title_short On sums of monotone functions over smooth numbers
title_full On sums of monotone functions over smooth numbers
title_fullStr On sums of monotone functions over smooth numbers
title_full_unstemmed On sums of monotone functions over smooth numbers
title_sort on sums of monotone functions over smooth numbers
publisher Sciendo
series Acta Universitatis Sapientiae: Mathematica
issn 2066-7752
publishDate 2021-08-01
description In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n)\sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.
topic smooth number
monotone function
dickman function
abel’s identity
40d05
url https://doi.org/10.2478/ausm-2021-0016
work_keys_str_mv AT romangabor onsumsofmonotonefunctionsoversmoothnumbers
_version_ 1717371763766067200