On sums of monotone functions over smooth numbers
In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2021-08-01
|
Series: | Acta Universitatis Sapientiae: Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/ausm-2021-0016 |
id |
doaj-83af9253f62241e2bd21e440920fde45 |
---|---|
record_format |
Article |
spelling |
doaj-83af9253f62241e2bd21e440920fde452021-09-22T06:13:22ZengSciendoActa Universitatis Sapientiae: Mathematica2066-77522021-08-0113127328010.2478/ausm-2021-0016On sums of monotone functions over smooth numbersRomán Gábor0Eötvös Loránd University, HungaryIn this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n)\sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.https://doi.org/10.2478/ausm-2021-0016smooth numbermonotone functiondickman functionabel’s identity40d05 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Román Gábor |
spellingShingle |
Román Gábor On sums of monotone functions over smooth numbers Acta Universitatis Sapientiae: Mathematica smooth number monotone function dickman function abel’s identity 40d05 |
author_facet |
Román Gábor |
author_sort |
Román Gábor |
title |
On sums of monotone functions over smooth numbers |
title_short |
On sums of monotone functions over smooth numbers |
title_full |
On sums of monotone functions over smooth numbers |
title_fullStr |
On sums of monotone functions over smooth numbers |
title_full_unstemmed |
On sums of monotone functions over smooth numbers |
title_sort |
on sums of monotone functions over smooth numbers |
publisher |
Sciendo |
series |
Acta Universitatis Sapientiae: Mathematica |
issn |
2066-7752 |
publishDate |
2021-08-01 |
description |
In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f)\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right), which requirements are sufficient for the asymptotic∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n)\sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function. |
topic |
smooth number monotone function dickman function abel’s identity 40d05 |
url |
https://doi.org/10.2478/ausm-2021-0016 |
work_keys_str_mv |
AT romangabor onsumsofmonotonefunctionsoversmoothnumbers |
_version_ |
1717371763766067200 |