Summary: | The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as well as a system of As-Au bearing quartz–carbonate veins. In situ U-Pb zircon geochronology, using LA ICP-MS, of the Lake George granodiorite yielded a weighted mean <sup>206</sup>Pb/<sup>238</sup>U age of 419.6 ± 3.0 Ma. Step heating of phlogopite separated from the lamprophyre dykes produced a <sup>40</sup>Ar/<sup>39</sup>Ar plateau segment date of 419.4 ± 1.4 Ma. Single molybdenite crystal analysis for Re-Os geochronology was conducted on two W-Mo-bearing quartz veins, which cross-cut altered granodiorite and altered metasedimentary rocks and yielded two dates of 415.7 ± 1.7 Ma and 416.1 ± 1.7 Ma respectively. <sup>40</sup>Ar/<sup>39</sup>Ar geochronology of muscovite from alteration associated with Au-bearing quartz–carbonate veins yielded one representative plateau segment date of 414.1 ± 1.3 Ma. The dates produced in this study revealed that the different magmatic–hydrothermal events at the Lake George mine occurred over approximately a 10-million-year period at the end of the Silurian and the start of the Devonian following the termination of the Acadian orogeny.
|