Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia

Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In...

Full description

Bibliographic Details
Main Authors: Alexander Schlemmer, Sebastian Berg, Thomas Lilienkamp, Stefan Luther, Ulrich Parlitz
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-05-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphy.2018.00039/full
id doaj-839644392f114215b513a6bd2a0dbc2f
record_format Article
spelling doaj-839644392f114215b513a6bd2a0dbc2f2020-11-24T23:57:09ZengFrontiers Media S.A.Frontiers in Physics2296-424X2018-05-01610.3389/fphy.2018.00039351698Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac ArrhythmiaAlexander Schlemmer0Alexander Schlemmer1Sebastian Berg2Sebastian Berg3Thomas Lilienkamp4Thomas Lilienkamp5Stefan Luther6Stefan Luther7Stefan Luther8Stefan Luther9Stefan Luther10Ulrich Parlitz11Ulrich Parlitz12Ulrich Parlitz13Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, GermanyResearch Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, GermanyResearch Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, GermanyResearch Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, GermanyGerman Center for Cardiovascular Research (DZHK), Partner-Site Göttingen, Göttingen, GermanyInstitute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, GermanyDepartment of Physics and Bioengineering, Northeastern University, Boston, MA, United StatesResearch Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, GermanyGerman Center for Cardiovascular Research (DZHK), Partner-Site Göttingen, Göttingen, GermanyPermutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.https://www.frontiersin.org/article/10.3389/fphy.2018.00039/fullpermutation entropycardiac arrhythmiaFenton-Karma simulationcomplexityexcitable mediaphase singularities
collection DOAJ
language English
format Article
sources DOAJ
author Alexander Schlemmer
Alexander Schlemmer
Sebastian Berg
Sebastian Berg
Thomas Lilienkamp
Thomas Lilienkamp
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
spellingShingle Alexander Schlemmer
Alexander Schlemmer
Sebastian Berg
Sebastian Berg
Thomas Lilienkamp
Thomas Lilienkamp
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
Frontiers in Physics
permutation entropy
cardiac arrhythmia
Fenton-Karma simulation
complexity
excitable media
phase singularities
author_facet Alexander Schlemmer
Alexander Schlemmer
Sebastian Berg
Sebastian Berg
Thomas Lilienkamp
Thomas Lilienkamp
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Stefan Luther
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
author_sort Alexander Schlemmer
title Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
title_short Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
title_full Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
title_fullStr Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
title_full_unstemmed Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
title_sort spatiotemporal permutation entropy as a measure for complexity of cardiac arrhythmia
publisher Frontiers Media S.A.
series Frontiers in Physics
issn 2296-424X
publishDate 2018-05-01
description Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.
topic permutation entropy
cardiac arrhythmia
Fenton-Karma simulation
complexity
excitable media
phase singularities
url https://www.frontiersin.org/article/10.3389/fphy.2018.00039/full
work_keys_str_mv AT alexanderschlemmer spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT alexanderschlemmer spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT sebastianberg spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT sebastianberg spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT thomaslilienkamp spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT thomaslilienkamp spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT stefanluther spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT stefanluther spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT stefanluther spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT stefanluther spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT stefanluther spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT ulrichparlitz spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT ulrichparlitz spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
AT ulrichparlitz spatiotemporalpermutationentropyasameasureforcomplexityofcardiacarrhythmia
_version_ 1725455377974165504