Reversible oxygen-induced p-doping of mixed-cation halide perovskites

To fully unlock the potential of metal halide perovskites (MHPs) for use in optoelectronic devices, a comprehensive understanding of their electronic properties is in strong demand but presently lacking. This photoelectron spectroscopy study reveals that the thin films of three important mixed-catio...

Full description

Bibliographic Details
Main Authors: Dongguen Shin, Fengshuo Zu, Norbert Koch
Format: Article
Language:English
Published: AIP Publishing LLC 2021-08-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0056346
Description
Summary:To fully unlock the potential of metal halide perovskites (MHPs) for use in optoelectronic devices, a comprehensive understanding of their electronic properties is in strong demand but presently lacking. This photoelectron spectroscopy study reveals that the thin films of three important mixed-cation/mixed-halide MHPs behave like intrinsic semiconductors with a very low defect concentration. The Fermi level position in the bandgap can be varied by almost 1 eV by choosing substrates of appropriate work function for samples that were handled under inert conditions. Upon oxygen exposure, two organic/inorganic-cation MHPs become strongly p-doped due to oxygen diffusion into the bulk, a process that is fully reversible when storing the samples in ultrahigh vacuum. In contrast, all-inorganic CsPbI1.8Br1.2 exhibits no electronic property changes upon oxygen exposure. Nonetheless, oxygen is found to effectively remove (light-induced) lead-related surface states of CsPbI1.8Br1.2.
ISSN:2166-532X