Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
MAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Computation |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-3197/8/3/75 |
id |
doaj-838e81f20621446b85b1ab3165d5f146 |
---|---|
record_format |
Article |
spelling |
doaj-838e81f20621446b85b1ab3165d5f1462020-11-25T03:01:29ZengMDPI AGComputation2079-31972020-08-018757510.3390/computation8030075Clustering Improves the Goemans–Williamson Approximation for the Max-Cut ProblemAngel E. Rodriguez-Fernandez0Bernardo Gonzalez-Torres1Ricardo Menchaca-Mendez2and Peter F. Stadler3Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, GermanyDepartment of Computer Science, University of California, Santa Cruz, CA 95064, USACentro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, MexicoMax Planck Institute for Mathematics in the Sciences, 04103 Leipzig, GermanyMAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>i</mi></msub></semantics></math></inline-formula> by unitary vectors <inline-formula><math display="inline"><semantics><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub></semantics></math></inline-formula>. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product <inline-formula><math display="inline"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub><mo>·</mo><mover accent="true"><mi>r</mi><mo>→</mo></mover></mrow></semantics></math></inline-formula> with a random vector <inline-formula><math display="inline"><semantics><mover accent="true"><mi>r</mi><mo>→</mo></mover></semantics></math></inline-formula>. Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of <i>k</i>-means and <i>k</i>-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAXmathsizesmall-CUTmathsizesmall. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee.https://www.mdpi.com/2079-3197/8/3/75algorithmsapproximationsemidefinite programmingMax-Cutclustering |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Angel E. Rodriguez-Fernandez Bernardo Gonzalez-Torres Ricardo Menchaca-Mendez and Peter F. Stadler |
spellingShingle |
Angel E. Rodriguez-Fernandez Bernardo Gonzalez-Torres Ricardo Menchaca-Mendez and Peter F. Stadler Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem Computation algorithms approximation semidefinite programming Max-Cut clustering |
author_facet |
Angel E. Rodriguez-Fernandez Bernardo Gonzalez-Torres Ricardo Menchaca-Mendez and Peter F. Stadler |
author_sort |
Angel E. Rodriguez-Fernandez |
title |
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem |
title_short |
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem |
title_full |
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem |
title_fullStr |
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem |
title_full_unstemmed |
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem |
title_sort |
clustering improves the goemans–williamson approximation for the max-cut problem |
publisher |
MDPI AG |
series |
Computation |
issn |
2079-3197 |
publishDate |
2020-08-01 |
description |
MAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>i</mi></msub></semantics></math></inline-formula> by unitary vectors <inline-formula><math display="inline"><semantics><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub></semantics></math></inline-formula>. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product <inline-formula><math display="inline"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub><mo>·</mo><mover accent="true"><mi>r</mi><mo>→</mo></mover></mrow></semantics></math></inline-formula> with a random vector <inline-formula><math display="inline"><semantics><mover accent="true"><mi>r</mi><mo>→</mo></mover></semantics></math></inline-formula>. Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of <i>k</i>-means and <i>k</i>-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAXmathsizesmall-CUTmathsizesmall. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee. |
topic |
algorithms approximation semidefinite programming Max-Cut clustering |
url |
https://www.mdpi.com/2079-3197/8/3/75 |
work_keys_str_mv |
AT angelerodriguezfernandez clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem AT bernardogonzaleztorres clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem AT ricardomenchacamendez clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem AT andpeterfstadler clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem |
_version_ |
1724693594662502400 |