Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem

MAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="in...

Full description

Bibliographic Details
Main Authors: Angel E. Rodriguez-Fernandez, Bernardo Gonzalez-Torres, Ricardo Menchaca-Mendez, and Peter F. Stadler
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Computation
Subjects:
Online Access:https://www.mdpi.com/2079-3197/8/3/75
id doaj-838e81f20621446b85b1ab3165d5f146
record_format Article
spelling doaj-838e81f20621446b85b1ab3165d5f1462020-11-25T03:01:29ZengMDPI AGComputation2079-31972020-08-018757510.3390/computation8030075Clustering Improves the Goemans–Williamson Approximation for the Max-Cut ProblemAngel E. Rodriguez-Fernandez0Bernardo Gonzalez-Torres1Ricardo Menchaca-Mendez2and Peter F. Stadler3Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, GermanyDepartment of Computer Science, University of California, Santa Cruz, CA 95064, USACentro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, MexicoMax Planck Institute for Mathematics in the Sciences, 04103 Leipzig, GermanyMAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>i</mi></msub></semantics></math></inline-formula> by unitary vectors <inline-formula><math display="inline"><semantics><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub></semantics></math></inline-formula>. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product <inline-formula><math display="inline"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub><mo>·</mo><mover accent="true"><mi>r</mi><mo>→</mo></mover></mrow></semantics></math></inline-formula> with a random vector <inline-formula><math display="inline"><semantics><mover accent="true"><mi>r</mi><mo>→</mo></mover></semantics></math></inline-formula>. Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of <i>k</i>-means and <i>k</i>-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAXmathsizesmall-CUTmathsizesmall. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee.https://www.mdpi.com/2079-3197/8/3/75algorithmsapproximationsemidefinite programmingMax-Cutclustering
collection DOAJ
language English
format Article
sources DOAJ
author Angel E. Rodriguez-Fernandez
Bernardo Gonzalez-Torres
Ricardo Menchaca-Mendez
and Peter F. Stadler
spellingShingle Angel E. Rodriguez-Fernandez
Bernardo Gonzalez-Torres
Ricardo Menchaca-Mendez
and Peter F. Stadler
Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
Computation
algorithms
approximation
semidefinite programming
Max-Cut
clustering
author_facet Angel E. Rodriguez-Fernandez
Bernardo Gonzalez-Torres
Ricardo Menchaca-Mendez
and Peter F. Stadler
author_sort Angel E. Rodriguez-Fernandez
title Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
title_short Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
title_full Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
title_fullStr Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
title_full_unstemmed Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem
title_sort clustering improves the goemans–williamson approximation for the max-cut problem
publisher MDPI AG
series Computation
issn 2079-3197
publishDate 2020-08-01
description MAXmathsizesmall-CUTmathsizesmall is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>i</mi></msub></semantics></math></inline-formula> by unitary vectors <inline-formula><math display="inline"><semantics><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub></semantics></math></inline-formula>. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product <inline-formula><math display="inline"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>→</mo></mover><mi>i</mi></msub><mo>·</mo><mover accent="true"><mi>r</mi><mo>→</mo></mover></mrow></semantics></math></inline-formula> with a random vector <inline-formula><math display="inline"><semantics><mover accent="true"><mi>r</mi><mo>→</mo></mover></semantics></math></inline-formula>. Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of <i>k</i>-means and <i>k</i>-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAXmathsizesmall-CUTmathsizesmall. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee.
topic algorithms
approximation
semidefinite programming
Max-Cut
clustering
url https://www.mdpi.com/2079-3197/8/3/75
work_keys_str_mv AT angelerodriguezfernandez clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem
AT bernardogonzaleztorres clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem
AT ricardomenchacamendez clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem
AT andpeterfstadler clusteringimprovesthegoemanswilliamsonapproximationforthemaxcutproblem
_version_ 1724693594662502400