Substorm behavior of the auroral electrojet indices

The behavior of the auroral electrojet indices AU and AL during classical substorms is investigated by the use of global auroral images. A superposition of the 12 AE stations onto global auroral images and identification of the AL and AU contributing stations enable an understanding of the tempo...

Full description

Bibliographic Details
Main Authors: J. W. Gjerloev, R. A. Hoffman, M. M. Friel, L. A. Frank, J. B. Sigwarth
Format: Article
Language:English
Published: Copernicus Publications 2004-06-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/22/2135/2004/angeo-22-2135-2004.pdf
Description
Summary:The behavior of the auroral electrojet indices AU and AL during classical substorms is investigated by the use of global auroral images. A superposition of the 12 AE stations onto global auroral images and identification of the AL and AU contributing stations enable an understanding of the temporal as well as spatial behavior of the indices with respect to the substorm coordinate system and timeframe. Based on this simple technique it was found that at substorm onset the AL contributing station makes a characteristic jump from a location near the dawn terminator to the onset region, typically bypassing one or more AE stations. During the expansion phase this station typically lies at the poleward edge of the surge region. This is the location of the intense substorm current wedge electrojet in the semiempirical self-consistent substorm model of the three-dimensional current system by Gjerloev and Hoffman (2002). This current wedge is fed primarily pre-midnight by an imbalance of the Region 0 and Region 1 field-aligned currents, not from the dawnside westward electrojet. Then during the early recovery phase the AL contributing station jumps back to the dawn sector. The defining AU station does not show any similar systematic behavior. We also find that the dawn side westward electrojet seems to be unaffected by the introduction of the substorm current wedge. According to our model, much of this current is closed to the magnetosphere as it approaches midnight from dawn. Based on the characteristics of the AL station jumps, the behavior of the dawn-side electrojet, and the understanding of the three-dimensional substorm current system from our model, we provide additional experimental evidence for, and an understanding of, the concept of the two component westward electrojet, as suggested by Kamide and Kokubun (1996).
ISSN:0992-7689
1432-0576