Connected Skiing: Motion Quality Quantification in Alpine Skiing

Recent developments in sensing technology have made wearable computing smaller and cheaper. While many wearable technologies aim to quantify motion, there are few which aim to qualify motion. (2) To develop a wearable system to quantify motion quality during alpine skiing, IMUs were affixed to the s...

Full description

Bibliographic Details
Main Authors: Cory Snyder, Aaron Martínez, Rüdiger Jahnel, Jason Roe, Thomas Stöggl
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Sensors
Subjects:
IMU
Online Access:https://www.mdpi.com/1424-8220/21/11/3779
Description
Summary:Recent developments in sensing technology have made wearable computing smaller and cheaper. While many wearable technologies aim to quantify motion, there are few which aim to qualify motion. (2) To develop a wearable system to quantify motion quality during alpine skiing, IMUs were affixed to the ski boots of nineteen expert alpine skiers while they completed a set protocol of skiing styles, included carving and drifting in long, medium, and short radii. The IMU data were processed according to the previously published skiing activity recognition chain algorithms for turn segmentation, enrichment, and turn style classification Principal component models were learned on the time series variables edge angle, symmetry, radial force, and speed to identify the sources of variability in a subset of reference skiers. The remaining data were scored by comparing the PC score distributions of variables to the reference dataset. (3) The algorithm was able to differentiate between an expert and beginner skier, but not between an expert and a ski instructor, or a ski instructor and a beginner. (4) The scoring algorithm is a novel concept to quantify motion quality but is limited by the accuracy and relevance of the input data.
ISSN:1424-8220