Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac
Introduction: Medical physics guidelines stress the importance of radiation-imaging coincidence, especially for stereotactic treatments. However, multi-energy linear accelerators may only allow a single imaging isocenter. A procedure was developed to simultaneously optimize radiation-imaging isocent...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2021-01-01
|
Series: | Journal of Medical Physics |
Subjects: | |
Online Access: | http://www.jmp.org.in/article.asp?issn=0971-6203;year=2021;volume=46;issue=2;spage=105;epage=110;aulast=Knill |
id |
doaj-835ecc095b754c36a187e83ef676aa44 |
---|---|
record_format |
Article |
spelling |
doaj-835ecc095b754c36a187e83ef676aa442021-08-20T06:10:23ZengWolters Kluwer Medknow PublicationsJournal of Medical Physics0971-62031998-39132021-01-0146210511010.4103/jmp.JMP_7_21Simultaneous optimization of radiation-imaging coincidence for a multi-energy linacCory KnillRaminder SandhuRobert HalfordMichael SnyderDanielle LackIntroduction: Medical physics guidelines stress the importance of radiation-imaging coincidence, especially for stereotactic treatments. However, multi-energy linear accelerators may only allow a single imaging isocenter. A procedure was developed to simultaneously optimize radiation-imaging isocenter coincidence for all linac photon energies on a Versa HD. Materials and Methods: First, the radiation beam center of each energy was adjusted to match the collimator rotation axis using a novel method that combined ion chamber measurements with a modified Winston-Lutz (WL) test using images only at gantry, couch, and collimator angles of 0°. With all energies properly steered, an 8-field WL test was performed to determine average linac isocenter position across all energies, gantry, and collimator angles. Lasers and the kV imaging isocenter were calibrated to the average linac isocenter of all photon energies. Finally, A 12-field WL test consisting of gantry, couch, and collimator rotations was used to adjust the couch rotation axis to the average linac isocenter, thereby minimizing overall radiation-imaging isocentricity of the system. Results: Using this method, the beam centers were calibrated within 0.10 mm of collimator rotation axis, and linac isocenter coincidence was within 0.20 mm for all energies. Couch isocenter coincidence was adjusted within 0.20 mm of average linac isocenter. Average radiation-imaging isocentricity for all energies was 0.89 mm (0.80–0.98 mm) for a single imaging isocenter. Conclusion: This work provides a method to adjust radiation-imaging coincidence within 1.0 mm for all energies on Elekta's Versa HD.http://www.jmp.org.in/article.asp?issn=0971-6203;year=2021;volume=46;issue=2;spage=105;epage=110;aulast=Knillimage-guided radiotherapyisocentricitylinacstereotactic body radiation therapystereotactic radiosurgery |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cory Knill Raminder Sandhu Robert Halford Michael Snyder Danielle Lack |
spellingShingle |
Cory Knill Raminder Sandhu Robert Halford Michael Snyder Danielle Lack Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac Journal of Medical Physics image-guided radiotherapy isocentricity linac stereotactic body radiation therapy stereotactic radiosurgery |
author_facet |
Cory Knill Raminder Sandhu Robert Halford Michael Snyder Danielle Lack |
author_sort |
Cory Knill |
title |
Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
title_short |
Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
title_full |
Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
title_fullStr |
Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
title_full_unstemmed |
Simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
title_sort |
simultaneous optimization of radiation-imaging coincidence for a multi-energy linac |
publisher |
Wolters Kluwer Medknow Publications |
series |
Journal of Medical Physics |
issn |
0971-6203 1998-3913 |
publishDate |
2021-01-01 |
description |
Introduction: Medical physics guidelines stress the importance of radiation-imaging coincidence, especially for stereotactic treatments. However, multi-energy linear accelerators may only allow a single imaging isocenter. A procedure was developed to simultaneously optimize radiation-imaging isocenter coincidence for all linac photon energies on a Versa HD. Materials and Methods: First, the radiation beam center of each energy was adjusted to match the collimator rotation axis using a novel method that combined ion chamber measurements with a modified Winston-Lutz (WL) test using images only at gantry, couch, and collimator angles of 0°. With all energies properly steered, an 8-field WL test was performed to determine average linac isocenter position across all energies, gantry, and collimator angles. Lasers and the kV imaging isocenter were calibrated to the average linac isocenter of all photon energies. Finally, A 12-field WL test consisting of gantry, couch, and collimator rotations was used to adjust the couch rotation axis to the average linac isocenter, thereby minimizing overall radiation-imaging isocentricity of the system. Results: Using this method, the beam centers were calibrated within 0.10 mm of collimator rotation axis, and linac isocenter coincidence was within 0.20 mm for all energies. Couch isocenter coincidence was adjusted within 0.20 mm of average linac isocenter. Average radiation-imaging isocentricity for all energies was 0.89 mm (0.80–0.98 mm) for a single imaging isocenter. Conclusion: This work provides a method to adjust radiation-imaging coincidence within 1.0 mm for all energies on Elekta's Versa HD. |
topic |
image-guided radiotherapy isocentricity linac stereotactic body radiation therapy stereotactic radiosurgery |
url |
http://www.jmp.org.in/article.asp?issn=0971-6203;year=2021;volume=46;issue=2;spage=105;epage=110;aulast=Knill |
work_keys_str_mv |
AT coryknill simultaneousoptimizationofradiationimagingcoincidenceforamultienergylinac AT ramindersandhu simultaneousoptimizationofradiationimagingcoincidenceforamultienergylinac AT roberthalford simultaneousoptimizationofradiationimagingcoincidenceforamultienergylinac AT michaelsnyder simultaneousoptimizationofradiationimagingcoincidenceforamultienergylinac AT daniellelack simultaneousoptimizationofradiationimagingcoincidenceforamultienergylinac |
_version_ |
1721201420648054784 |