Some properties of algebraic difference equations of first order

Abstract We prove that if g ( z ) $g(z)$ is a finite-order transcendental meromorphic solution of ( △ c g ( z ) ) 2 = A ( z ) g ( z ) g ( z + c ) + B ( z ) , $$\bigl(\triangle_{c} g(z)\bigr)^{2}=A(z)g(z)g(z+c)+B(z), $$ where A ( z ) $A(z)$ and B ( z ) $B(z)$ are polynomials such that deg A ( z ) >...

Full description

Bibliographic Details
Main Author: Yong Liu
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-017-1395-8
Description
Summary:Abstract We prove that if g ( z ) $g(z)$ is a finite-order transcendental meromorphic solution of ( △ c g ( z ) ) 2 = A ( z ) g ( z ) g ( z + c ) + B ( z ) , $$\bigl(\triangle_{c} g(z)\bigr)^{2}=A(z)g(z)g(z+c)+B(z), $$ where A ( z ) $A(z)$ and B ( z ) $B(z)$ are polynomials such that deg A ( z ) > 0 $\deg A(z)>0$ , then 1 ≤ ρ ( g ) = max { λ ( g ) , λ ( 1 g ) } . $$1 \leq\rho(g)=\max\biggl\{ \lambda(g), \lambda\biggl(\frac{1}{g}\biggr) \biggr\} . $$
ISSN:1687-1847