Almost Markovian processes from closed dynamics

It is common, when dealing with quantum processes involving a subsystem of a much larger composite closed system, to treat them as effectively memory-less (Markovian). While open systems theory tells us that non-Markovian processes should be the norm, the ubiquity of Markovian processes is undeniabl...

Full description

Bibliographic Details
Main Authors: Pedro Figueroa-Romero, Kavan Modi, Felix A. Pollock
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2019-04-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2019-04-30-136/pdf/
id doaj-83599a5880774dab8a286e0a762ff604
record_format Article
spelling doaj-83599a5880774dab8a286e0a762ff6042020-11-25T02:28:56ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2019-04-01313610.22331/q-2019-04-30-13610.22331/q-2019-04-30-136Almost Markovian processes from closed dynamicsPedro Figueroa-RomeroKavan ModiFelix A. PollockIt is common, when dealing with quantum processes involving a subsystem of a much larger composite closed system, to treat them as effectively memory-less (Markovian). While open systems theory tells us that non-Markovian processes should be the norm, the ubiquity of Markovian processes is undeniable. Here, without resorting to the Born-Markov assumption of weak coupling or making any approximations, we formally prove that processes are close to Markovian ones, when the subsystem is sufficiently small compared to the remainder of the composite, with a probability that tends to unity exponentially in the size of the latter. We also show that, for a fixed global system size, it may not be possible to neglect non-Markovian effects when the process is allowed to continue for long enough. However, detecting non-Markovianity for such processes would usually require non-trivial entangling resources. Our results have foundational importance, as they give birth to $\textit{almost}$ Markovian processes from composite closed dynamics, and to obtain them we introduce a new notion of equilibration that is far stronger than the conventional one and show that this stronger equilibration is attained.https://quantum-journal.org/papers/q-2019-04-30-136/pdf/
collection DOAJ
language English
format Article
sources DOAJ
author Pedro Figueroa-Romero
Kavan Modi
Felix A. Pollock
spellingShingle Pedro Figueroa-Romero
Kavan Modi
Felix A. Pollock
Almost Markovian processes from closed dynamics
Quantum
author_facet Pedro Figueroa-Romero
Kavan Modi
Felix A. Pollock
author_sort Pedro Figueroa-Romero
title Almost Markovian processes from closed dynamics
title_short Almost Markovian processes from closed dynamics
title_full Almost Markovian processes from closed dynamics
title_fullStr Almost Markovian processes from closed dynamics
title_full_unstemmed Almost Markovian processes from closed dynamics
title_sort almost markovian processes from closed dynamics
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
series Quantum
issn 2521-327X
publishDate 2019-04-01
description It is common, when dealing with quantum processes involving a subsystem of a much larger composite closed system, to treat them as effectively memory-less (Markovian). While open systems theory tells us that non-Markovian processes should be the norm, the ubiquity of Markovian processes is undeniable. Here, without resorting to the Born-Markov assumption of weak coupling or making any approximations, we formally prove that processes are close to Markovian ones, when the subsystem is sufficiently small compared to the remainder of the composite, with a probability that tends to unity exponentially in the size of the latter. We also show that, for a fixed global system size, it may not be possible to neglect non-Markovian effects when the process is allowed to continue for long enough. However, detecting non-Markovianity for such processes would usually require non-trivial entangling resources. Our results have foundational importance, as they give birth to $\textit{almost}$ Markovian processes from composite closed dynamics, and to obtain them we introduce a new notion of equilibration that is far stronger than the conventional one and show that this stronger equilibration is attained.
url https://quantum-journal.org/papers/q-2019-04-30-136/pdf/
work_keys_str_mv AT pedrofigueroaromero almostmarkovianprocessesfromcloseddynamics
AT kavanmodi almostmarkovianprocessesfromcloseddynamics
AT felixapollock almostmarkovianprocessesfromcloseddynamics
_version_ 1724835475942801408